Solution #9, CSE 191

Fall, 2014 Solution

1. (0 points).

Sol: Let P(n) denote the proposition: " $\sum_{i=1}^{n} i^3 = \frac{n^2 \cdot (n+1)^2}{4}$ ".

BASIS STEP: P(1) is true, because $1^3 = \frac{1^2 \cdot (1+1)^2}{4}$.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is, $\sum_{i=1}^{k} i^3 = \frac{k^2 \cdot (k+1)^2}{4}$.

$$\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^k i^3 + (k+1)^3$$
 (by the meaning of \sum)
$$= \frac{k^2 \cdot (k+1)^2}{4} + (k+1)^3$$
 (by induction hypothesis.)
$$= (k+1)^2 \cdot \left[\frac{k^2}{4} + (k+1)\right]$$
 (the rest are by algebra.)
$$= (k+1)^2 \cdot \left[\frac{k^2 + 4k + 4}{4}\right]$$

$$= \frac{(k+1)^2 \cdot (k+2)^2}{4}$$

This establishes the inductive step of the proof.

2. (0 points). Page 330, Problem 10 (a), (b). Sol:

(a):

$$\frac{1}{1 \cdot 2} = \frac{1}{2}$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} = \frac{2}{3}$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} = \frac{3}{4}$$

We guess $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$

(b): Let P(n) denote the proposition: " $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ ".

BASIS STEP: P(1) is true, because $\frac{1}{1\cdot 2} = \frac{1}{2}$.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is, $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{k(k+1)} = \frac{k}{k+1}$.

1

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$$
 (by the meaning of \sum)
$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$
 (by induction hypothesis.)
$$= \frac{1}{k+1} \cdot (k + \frac{1}{k+2})$$
 (the rest are by algebra.)
$$= \frac{1}{k+1} \cdot (\frac{k^2 + 2k + 1}{k+2})$$

$$= \frac{1}{k+1} \cdot (\frac{k+1)^2}{k+2}$$

$$= \frac{k+1}{k+2}$$

This establishes the inductive step of the proof.

3. (0 points). Page 330, Problem 14.

Let P(n) denote the proposition: " $\sum_{i=1}^{n} i2^i = (n-1)2^{n+1} + 2$ ".

BASIS STEP: P(1) is true, because $1 \cdot 2^1 = (1-1) \cdot 2^{1+1} + 2$.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is, $\sum_{i=1}^{k} i2^i = (k-1)2^{k+1} + 2$.

$$\sum_{i=1}^{k+1} i2^i = \sum_{i=1}^k i2^i + (k+1) \cdot 2^{k+1}$$
 (by the meaning of \sum)
$$= (k-1) \cdot 2^{k+1} + 2 + (k+1) \cdot 2^{k+1}$$
 (by induction hypothesis.)
$$= 2^{k+1} \cdot (k-1+k+1) + 2$$
 (the rest are by algebra.)
$$= 2^{k+1} \cdot 2 \cdot k + 2$$

$$= k \cdot 2^{k+2} + 2$$

This establishes the inductive step of the proof.

4. (0 points). Page 330, Problem 18. Sol:

(a):
$$2! < 2^2$$

(b):
$$2! = 2 \cdot 1 = 2$$
;
 $2^2 = 4$;
So $2! < 2^2$.

(c): The inductive hypothesis is the statement that P(k) is true, that is, $k! < k^k$.

(d):
$$(k+1)! < (k+1)^{k+1}$$
.

(e):

$$LHS = (k+1)! = k! \cdot (k+1)$$
 (by the definition of $(k+1)!$)

$$< k^k \cdot (k+1)$$
 (by induction hypothesis.)

$$< (k+1)^k \cdot (k+1)$$
 (because $k^k < (k+1)^k$)

$$= (k+1)^{k+1}$$

- (f): Toward a contradiction, assume that there is at least one positive integer greater than 1 for which P(n) is false. Let S be the set of positive integers greater than 1 for which P(n). Then $S \neq \emptyset$. Let m be the smallest integer in S. We know that m cannot be 2, because P(2) is true. Because m is positive and greater than 2, m-1 is a positive integer greater than 1. Furthermore, because m-1 is less than m, it is not in S, so P(m-1) must be true. Because the conditional statement $P(m-1) \rightarrow P(m)$ is also true, it must be the case that P(m) is true. This contradicts the choice of m. Hence, P(n) must be true for every positive integer n.
 - 5. (0 points). Page 330, Problem 20. Sol: Let P(n) denote the proposition: " $3^n < n!$ ".

BASIS STEP: P(7) is true, because $3^7 < 7!$.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is, $3^k < k!$.

$$3^{k+1} = 3^k \times 3$$
 (by the meaning of 3^{k+1} .)
 $< k! \times 3$ (by induction hypothesis.)
 $< k! \times (k+1)$ (because $3 < k+1$.)
 $= (k+1)!$

This establishes the inductive step of the proof.

6. (3 points). Page 330, Problem 32. Sol: Let P(n) denote the proposition: "3 divides $n^3 + 2n$ ".

BASIS STEP: P(1) is true, because 3 divides $1^3 + 2 \times 1 = 3$.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is, 3 divides $k^3 + 2k$. So $k^3 + 2k = 3h$ for some positive integer h.

$$(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$$
 (by algebra.)
 $= (k^3 + 2k) + 3(k^2 + k + 1)$ (by algebra.)
 $= 3h + 3(k^2 + k + 1)$ (by induction hypothesis.)
 $= 3(h + k^2 + k + 1)$ (by algebra.)

So, 3 divides $(k+1)^3 + 2(k+1)$. This establishes the inductive step of the proof.

7 (0 points). Page 331, Problem 40. Sol: Let P(n) denote the proposition: " $(A_1 \cup A_2 \cup \cdots \cup A_n) \cap B = (A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_n \cap B)$ ".

BASIS STEP: P(1) is true, because $A_1 \cap B = A_1 \cap B$.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is, $(A_1 \cup A_2 \cup \cdots \cup A_k) \cap B = (A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_k \cap B)$.

$$RHS = [(A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_k \cap B)] \cup (A_{k+1} \cap B)$$
 (by the meaning of set operations.)
$$= ((A_1 \cup A_2 \cup \cdots \cup A_k) \cap B) \cup (A_{k+1} \cap B)$$
 (by induction hypothesis.)
$$= (A_1 \cup A_2 \cup \cdots \cup A_k \cup A_{k+1}) \cap B$$
 (by distributive rule for set operations.)
$$= LHS$$

This establishes the inductive step of the proof.

8. (0 points). Page 331, Problem 51.

Sol: The mistake is in applying the inductive hypothesis to look at $\max(x-1, y-1)$, because even though x and y are positive integers, x-1 and y-1 need not be (one or both could be 0). In fact, that is what happens if we let x=1 and y=2 when k=1.