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ABSTRACT
Joins are expensive, and online aggregation over joins was
proposed to mitigate the cost, which offers a nice and flexible
tradeoff between query efficiency and accuracy in a continu-
ous, online fashion. However, the state-of-the-art approach,
in both internal and external memory, is based on ripple
join, which is still very expensive and may also need very
restrictive assumptions (e.g., tuples in a table are stored in
random order). We introduce a new approach, wander join,
to the online aggregation problem by performing random
walks over the underlying join graph. We have also imple-
mented and tested wander join in the latest PostgreSQL.

1. INTRODUCTION
Joins are the common operations in relational databases.

In interactive data analytics, users often need the database
system to quickly answer ad hoc queries with complex joins
involving multiple tables over gigabetyes or even terabytes
of data. For instance, the TPC-H benchmark specifies 22
queries, 17 of which are joins and the most complex one
involves 8 tables. Unfortunately, even the leading relational
database system may take hours to answer such complex
queries, especially when working with large data.

A line of work known as “online aggregation” [8] was pro-
posed, with the observation that users would prefer approx-
imate answers with quality guarantees (in the form of con-
fidence interval) if they can be returned much more quickly.
The quality of the approximate answers improves over time.
The user can immediately stop the query whenever the qual-
ity is satisfactory, saving a lot of computation resources.

SELECT SUM(l_extendedprice * (1 - l_discount))

FROM customer, orders, lineitem

WHERE c_mktsegment=‘BUILDING’

AND c_custkey=o_custkey

AND l_orderkey=o_orderkey

Consider the query above based on Q3 in TPC-H, which
queries the total value of the orders placed by the customers
in certain market segment. It involves natural joins over 3
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tables. Running the full join to complete on TPC-H data
with scale factor of 20 takes over 2 minutes while online ag-
gregation achieves a 2.4% confidence interval within 1 sec-
ond. If the user is satisfied with the result, he/she can stop
the query. Or the user can wait for a bit longer to get a
more accurate answer.

Prior work of online aggregation uses the ripple join al-
gorithm to perform online aggregation over joins. However,
no commercial or full-fledged open-source database systems
have adopted ripple join due to its inherent limitations and
weaknesses, which we will discuss in Section 2. We intro-
duce a new approach called wander join, which outperforms
ripple join significantly and is easy to implement in a full-
fledged database engine. We implemented wander join in
PostgreSQL. Users can pose online aggregation queries with
new keyword ONLINE through PostgreSQL CLI. We also con-
nected it to Apache Zeppelin, which allows users to see the
convergence of estimators over time through a web interface.

We give the problem formulation and the background of
online aggregation in Section 2. In Section 3 we describe
the key ideas of wander join. In Section 4, we present the
system implementation of wander join in PostgreSQL. In
Section 5, we show some evaluation results to illustrate the
performance advantage of wander join over ripple join and
full join and present a demonstration plan of wander join.
Lastly, we survey the related work in Section 6.

2. FORMULATION AND BACKGROUND
Problem formulation. The type of queries we aim to
support is SQL queries of the form

SELECT g, AGG(expression)

FROM R1, R2, . . . , Rk

WHERE join conditions AND selection predicates

GROUP BY g

where AGG can be any of the standard aggregation functions
(e.g. SUM, AVG, COUNT, VARIANCE) and expression can involve
any attributes of the tables. The join conditions consist of
equality or inequality conditions between pairs of the tables,
and selection predicates can be applied to any number
of the tables.

At any point in time during query processing, the algo-
rithm should output an estimator Ỹ for AGG(expression)
together with a confidence interval, i.e.,

Pr[|Ỹ − AGG(expression)| ≤ ε] ≥ α.

Here, ε is called the half-width of the confidence interval
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and α the confidence level. The user should specify one of
them and the algorithm will continuously update the other
as time goes on. The user can terminate the query when it
reaches the desired level. Alternatively, the user may also
specify a time limit on the query processing, and the algo-
rithm should return the best-effort estimate within the limit,
together with a confidence interval.

Ripple join. The ripple join algorithm [6] is central to prior
work on online aggregation over joins. It repeatedly takes
independent random samples from each table in a round-
robin fashion and stores them in the memory. When a new
tuple is retrieved, it is joined with all tuples stored in the
memory to get samples from the join results. Clearly, these
samples are not independent, nonetheless the sample mean
can still serve as an unbiased estimator but the formulas for
confidence intervals are complex and differ from standard
statistical formulas [5, 7].

In spite of the nice properties of online aggregation, no
commercial or full-fledged open-source database systems sup-
port this technique because of two weaknesses of the ripple
join algorithm: (1) The performance highly depends on the
fraction of the sampled tuples that actually join, which often
can be extremely low in practice. (2) The algorithm requires
that the tuples retrieved from the tables are in random order.
However, tuples are usually clustered according to primary
key to facilitate other operations. The system implementa-
tion of ripple join, DBO [4,13] actually has to be built from
scratch (independent from any existing database engines) to
support the random-order storage of tuples.

3. WANDER JOIN
In this section, we illustrate how wander join works by an

example of the natural join between 3 tables R1, R2, R3:

R1(A,B) ./ R2(B,C) ./ R3(C,D), (1)

where R1(A,B) means that R1 has two attributes A and B,
etc. The natural join returns all combinations of tuples from
the 3 tables that have matching values on their common
attributes. We assume that R2 has an index on attribute
B, R3 has an index on attribute C, and the aggregation
function is SUM(D).
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Figure 1: The 3-table join data graph: there is an
edge between two tuples if they can join.

We model the join as a graph called join data graph. Fig-
ure 1 shows a possible join data graph of the 3-table natural
join. Where each tuple is modeled as a vertex and there
is an edge between two tuples whenever they can join, i.e.
have the same value on their common attributes. Each join
result is then represented by a path of length 2 from some
vertex in R1 to some vertex in R3. Sampling a join result
boils down to sampling such a path from the graph.

Sampling a path from the graph does not require the graph
to be explicitly constructed. Rather, we first pick a vertex in
R1 uniformly at random and then perform a random walk
towards R3. In each step of the random walk, we sample
from the tuples in the next table that can join the previous
one uniformly at random, which can be done efficiently via
a B-Tree index.

Different paths may have different probabilities to be sam-
pled. It is obvious that sample mean is no longer an unbiased
estimator. Fortunately, the Horvitz-Thompson estimator [9]
can serve as an unbiased estimator. Suppose a path γ is sam-
pled with probability p(γ), whose value to be aggregated is
v(γ). Then v(γ)/p(γ) is an unbiased estimator of the SUM

aggregator. If the random walk gets stuck before the path
is complete, we should return 0 as the estimator. The prob-
ability of a path γ can be easily computed on-the-fly as the
path is sampled. Let γ = (t1, t2, t3) and dk(ti) be the num-
ber of tuples in table k that can join ti. Then the probability
of the path γ is

p(γ) =
1

|R1|
· 1

d2(t1)
· 1

d3(t2)
(2)

With a number of independent unbiased estimators com-
puted from the sampled paths, we can get an unbiased esti-
mator with lower variance by taking the average. We omit
the details for the formulas of variance and confidence inter-
val for different aggregate operators in this demo paper, but
they can be derived following similar techniques from [5].

4. WANDER JOIN IN POSTGRESQL
We implemented wander join in PostgreSQL by extending

its parser, plan generator, and query exeuctor. We added
serveral keywords to the SQL parser like ONLINE, WITHTIME,
CONFIDENCE, REPORTINTERVAL. Following is the online ag-
gregation query for the example based on Q3 of TPC-H:

SELECT ONLINE SUM(l_extendedprice * (1 - l_discount))

FROM customer, orders, lineitem

WHERE c_mktsegment=‘BUILDING’

AND c_custkey=o_custkey

AND l_orderkey=o_orderkey

WITHTIME 20 CONFIDENCE 95 REPORTINTERVAL 1

The above query tells the engine that it is an online ag-
gregation query, such that the engine should report the esti-
mations and their associated confidence intervals, calculated
with respect to 95% confidence level every 1 second for up
to 20 seconds.
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Figure 2: A directed join query graph and all its
walk plans.

The online aggregation queries are passed to plan genera-
tor for wander join. The plan generator constructs the join
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query graph (or query graph in short), where each vertex rep-
resents a table and there is a directed edge from one table to
another when there is an index on the join attribute of the
second table. Figure 2 shows a possible query graph and all
its walk plans. A walk plan is a walk order of the tables.
We first try to find a valid walk order that for each table
Ri (except the first one in the order), there exists a table
Rj earlier in the order such that there is a join condition
between Ri and Rj . In addition, Ri has an index on the
join attribute. If it is not possible to find such a valid walk
order, we relaxes the requirement by decomposing the graph
into serveral components so that each component has a valid
sub-walk order. All the join conditions not used in the walk
and all the selection conditions will be verified as soon as
tuples from the related tables are sampled. If the walk does
not satisfy the conditions, it is treated as a failed walk and
return an estimator of 0.
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Figure 3: Structure of the join data graph has sig-
nificant impact on different walk plans’ performance.

Selection conditions, structures of the join data graph and
different walk orders may greatly influence the success rate
of the walk, i.e. the probability that the walk does not get
stuck, which in turn influences how fast the estimator con-
verges. Considering the join data graph in Figure 3, if we
perform the random walk by the order R1, R2, R3, then the
success probability is only 2/7, but if we follow the order
R3, R2, R1, it is 100%. Even if the success rate is the same,
different non-uniformity also influences the the speed of con-
vergence. Instead of dealing with all the issues, we observe
that the performance of the random walk is measured by
the variance of the final estimator after a given amount of
time. To find an optimal plan, we simply generate all the
promising plans. Then we run some trial samples according
to each of the plan and pick the best one to continue with.
Note the total number of plans could be exponential in the
number of tables but it is not a real concern because 1) the
number of tables is usually small (up to 8 tables in TPC-H
queries) 2) the trial samples can also be combined into the
final estimator so that they are not wasted.

5. EVALUATION AND DEMO PLAN

5.1 Evaluation
We compared our system against the full join in Post-

greSQL and the ripple join implemented in Turbo DBO [4],
an improvement to the original DBO engine that extends
ripple join to data on external memory with many optimiza-
tions. We used 95% as the default confidence level for both
DBO and our system.

Due to the low-latency requirement for data analytical
tasks and thanks to growing memory sizes, database systems
are moving towards the “in-memory” computing paradigm.
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(b) Wander join in PG

Figure 4: Experimental results with sufficient mem-
ory: 32GB memory.

We first tested our PostgreSQL implementation of wander
join when there is sufficient memory. We used a machine
with 32GB memory and data sets of sizes up to 20GB. We
ran 3 queries based on Q3, Q7 and Q10 in TPC-H bench-
mark using wander join, full join in PostgreSQL and Turbo
DBO. As shown in Figure 4, the time of full join linearly
clearly grows. The data size has a mild impact on the per-
formance of wander join because the use of B-tree indices
leads to logarithmical increase in access cost when data size
grows. Nevertheless, the time growth is much slower than
full join and the time to 1% confidence interval (CI) out-
performs full join in PostgreSQL by more than one order
of magnitude. We also ran Turbo DBO in this case but it
turned out to be even slower than full join in PostgreSQL,
so we do not show its results. Partly it is because DBO is
designed for large data running with very small memory.
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Figure 5: Experimental results with limited mem-
ory, 4GB memory (Wonder join in PG and Turbo
DBO run to 1% confidence interval).

To compare our system and Turbo DBO in limited mem-
ory, we ran the queries again on a machine with only 4GB
memory on data sized from 10GB to 40GB. As seen in Fig-
ure 5, our system outperforms both full join in PostgreSQL
and Turbo DBO. Full join and Turbo DBO have a linear
growth in time while our system’s running time still grows
mildly. Both DBO and our system run to 1% CI.

5.2 Demonstration Plan
We will have an end-to-end demonstration of online ag-

gregation queries using wander join implemented in Post-
greSQL over TPC-H dataset. We will also show the com-
parison of the performance of wander join in PostgreSQL,
ripple join in DBO and full join in PostgreSQL.

Queries and dataset. The TPC-H benchmark used in
our demonstration is a decision support benchmark. It fea-
tures 8 tables: part, supplier, partsupp, nation, region, cus-
tomer, orders, lineitem. The benchmark also features a set
of business analysis queries (e.g. query of the value of goods
shipped between two specific nations). We will prepare sev-
eral online aggregation queries, e.g., Q3, Q7 and Q10 in
TPC-H. Some queries will have multiple selection conditions
and some will have groupby clause. Attendees can either use
these ready-to-run queries or construct their own queries on
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(a) Estimator converges over time. (b) (Relative) Confidence interval drops over time

Figure 6: Our web interface front-end for the demonstration of wander join in PostgreSQL.

the fly to test the system. We will preload TPC-H datasets
with different scale factors.

Web interface for thed demo. We have connected Post-
greSQL to Apache Zeppelin, which can show the query re-
sults in the form of table, line plot and other visualization
representation. Figure 6 shows our web interface. Atten-
dees can launch both online aggregation queries and normal
queries through a query input form (more forms can be cre-
ated on the fly). When launching online aggregation queries
to PostgreSQL, our system will use wander join to execute
the query. Attendees can see how the estimator converges
over time as in Figure 6(a), or plot the relative confidence
interval against elapsed time as in Figure 6(b).

We will also prepare the corresponding ready-to-run DBO
queries. Attendees can see a side-by-side comparison of per-
formance among wander join in PostgreSQL, ripple join in
Turbo DBO and full join in PostgreSQL.

6. RELATED WORK
The concept of online aggregation was first proposed in [8].

In particular, related to our problem, online aggregation over
joins was first studied in [6], where the ripple join algorithm
was designed. Extensions to ripple join were done over the
years [4, 12, 13, 15], in particular, to support ripple join in
DBO for large data on external memory.

In addition to these efforts, there is an increasing in-
terest in building sampling-based approximate query pro-
cessing systems, e.g., represented by systems like BlinkDB,
Monte-Carlo DB, Analytical Bootstrap, DICE and others
[1–3,10,11,14,16–18], but these systems do not support on-
line aggregations over joins.
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