
CSE462/562: Database Systems (Fall 24)
Lecture 2: Relational Model & Query

Languages

8/29/2024

Last Update: 8/28/24, 1:00 PM

Data abstraction
• A revisit of the personal spending DB

• What if we want to
• record the payment method

• track budgets/bills

• link entries to itemized receipts

• Or what if
• the program/spreadsheet is slow after a while

• you are managing the spending DB for many people (e.g., a company)

• Constant changes in data management
• for efficiency or for new application usages

• impractical to break existing applications for every change

CSE462/562 (Fall 2024): Lecture 2

Date Amount Description

2/1 $20.21 Grocery

2/2 $10.54 Fast food

2/3 $39.22 Cell phone bill

…

2/27 $33.00 Clothes

Data abstraction
• Data abstraction

• View level: what and how to present data to different applications/users

• Logical level: what data are stored

• Physical level: how data are stored

Physical Data Independence: ability to change physical data
storage without changing the logical schema

Logical Data Independence: ability to change logical schema
without changing the external views and upper-level applications

CSE462/562 (Fall 2024): Lecture 2

Data models
• Data models are conceptual tools for

• describing and defining the data abstractions

• linking user’s view to the bits stored in DBMS

• Many data models exist
• Relational model (aka structured data model)

• Entity-Relationship Model

• Semi-structured data model

• Graph data model

• …

• The survey below gives a historical view of why relational models are successful
• Joseph M. Hellerstein and Michael Stonebraker. What Goes Around Comes Around. Readings in Database

Systems, 4th Edition (2005).

• Keep it simple and stupid!
CSE462/562 (Fall 2024): Lecture 2

We’ll focus on relational model and Relational DataBase
Management Systems (RDBMS) in this course:

It’s the foundation of many other data models (including
semi-structured data model, graph data model and etc.).

Relational model
• Example: student records database

CSE462/562 (Fall 2024): Lecture 2

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

student

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

Relational model
• Relational database: a collection of named relations (aka tables)

• Relation: a set of records (aka tuples) – no duplicates
• In reality: multi-set semantics are more prevalent – allow duplicates

• Record: a sequence of values
• represents relationships among values

• Two concepts
• Database Schema: names of the relations + names and types of the columns + constraints

• e.g., student(sid: integer, name: string, login: string, major: string, adm_year: date)

• each named column is also called an attribute or a field

• Database instance: a snapshot of the data at a time point

• e.g., the specific data in our student record database example

CSE462/562 (Fall 2024): Lecture 2

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

Relational model

CSE462/562 (Fall 2024): Lecture 2

student
sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

Database schema
student(sid: integer, name: string, login: string, major: string, adm_year: date)
enrollment(sid: integer, semester: string, cno: integer, grade: float)

Database instance

Record

Relation (instance)

Relation (schema)

Column

Integrity constraints
• Key constraints

• Superkey: a set of columns that uniquely identify a record

• e.g., 𝑠𝑖𝑑 is a superkey of student relation; 𝑠𝑖𝑑, 𝑛𝑎𝑚𝑒 is too;

• e.g., 𝑠𝑖𝑑, 𝑠𝑒𝑚𝑒𝑠𝑡𝑒𝑟, 𝑐𝑛𝑜 is a superkey of enrollment relation; but {𝑠𝑖𝑑, 𝑐𝑛𝑜} is not

• Has nothing to do with specific instances

• {𝑠𝑖𝑑, 𝑐𝑛𝑜} is not a superkey even if no one’s ever taken a course twice

• but it will be if the university policy prohibits retaking the same course

• Candidate key: a superkey 𝐾 𝑠. 𝑡. ∄𝐾′ ⊂ 𝐾: 𝐾′ is a superkey

• e.g., {𝑠𝑖𝑑} and {𝑙𝑜𝑔𝑖𝑛} are both candidate keys of student; {𝑠𝑖𝑑, 𝑙𝑜𝑔𝑖𝑛} is not

• (Primary) key: a chosen candidate key by the database designer

• e.g., student(sid: integer, name: string, login: string, major: string, adm_year: date)

CSE462/562 (Fall 2024): Lecture 2

Integrity constraints
• Foreign-key constraints

• from attributes 𝐴 of referencing relation 𝑅 to primary key 𝐴′ of referenced relation 𝑅′:

• such that for any DB instance, any value of 𝐴 must appear in 𝐴′ of some tuple in 𝑅′

CSE462/562 (Fall 2024): Lecture 2

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

R’ = student

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

R = enrollment

Integrity constraints
• Referential constraints

• from attributes 𝐴 of referencing relation 𝑅 to attributes 𝐴′ of referenced relation 𝑅′

• such that for any DB instance, any value of 𝐴 must appear in 𝐴′ of some tuple in 𝑅′

• Foreign-key constraints as a special case where A’ is the primary key of R’

• Other general constraints

• These are less supported by DBMS due to efficiency reasons

CSE462/562 (Fall 2024): Lecture 2

Query Language
• Formal query languages

• Relational algebra

• Functional – describes how to query

• Relational calculus

• Declarative – describes what to query

• No side effects! Does not include data definition, update, integrity checks, and etc.

• Theoretical foundation of modern RDBMS; allows for query optimization

• Query language in practice: SQL (Structured Query Language)
• Has its root in relational algebra and relational calculus

• Includes many more beyond queries: imperative sublanguage, data definition, etc.

CSE462/562 (Fall 2024): Lecture 2

Structured Query Language (SQL)
• SQL stands for Structured Query Language

• It’s not only a “query language”

• Consists of
• Data Definition Language (DDL): define/modify schema, delete relations

• Integrity checks: foreign-key constraints, general constraints, triggers

• View definition, authorization specification, …

• Data Manipulation Language (DML): query/insert/update/delete in a DB instance

• Transaction control

• Stored procedure, embedded SQL, SQL Procedural language, …

• The most widely used relational query language. Latest standard is SQL-2023
• Each DBMS (e.g. MySQL/PostgreSQL) has some “unique” aspects

• We’ll only review the basics of SQL.

CSE462/562 (Fall 2024): Lecture 2

DDL - Create Table
• CREATE TABLE table_name ({
 column_name data_type

} [,…])

• Data Types include:
• CHAR(n) – fixed-length character string

• VARCHAR(n) – variable-length character string with max length n

• SMALLINT, INTEGER, BIGINT – signed 2/4/8-byte integers

• No unsigned integer support in standard SQL, though they do exist in some SQL dialect

• NUMERIC[(p[,s])] – exact numeric of selectable precision

• REAL, DOUBLE – single/double floating point numbers

• DATE, TIME, TIMESTAMP, …

• SERIAL - unique ID for indexing and cross reference

• …

CSE462/562 (Fall 2024): Lecture 2

DDL - Create Table w/ Column Constraints
• CREATE TABLE table_name ({
 column_name data_type

 [column_constraint [, ...]]

} [,…])

• Column Constraints:
[CONSTRAINT constraint_name] {

 DEFAULT default_expr |

 NOT NULL | NULL | UNIQUE | PRIMARY KEY |

 CHECK (boolean_expression) |

 REFERENCES reftable [(refcolumn)] [ON DELETE action]

 [ON UPDATE action] }

 where action is one of:
 NO ACTION, CASCADE, SET NULL, SET DEFAULT

CSE462/562 (Fall 2024): Lecture 2

can only reference the column’s value

DDL - Create Table w/ Table Constraints
• CREATE TABLE table_name ({
 column_name data_type
 [column_constraint [, ...]] |
 table_constraint
} [,…])

•Table constraints:
[CONSTRAINT constraint_name]{
 UNIQUE (column_name [, ...]) |
 PRIMARY KEY (column_name [, ...]) |
 CHECK (boolean_expression) |
 FOREIGN KEY (column_name [, ...])
 REFERENCES reftable [(refcolumn [, ...])]
 [ON DELETE action] [ON UPDATE action]}
 where action is one of:
 NO ACTION, CASCADE, SET NULL, SET DEFAULT

CSE462/562 (Fall 2024): Lecture 2

can only reference multiple table column’s values

DDL -Create Table (Examples)
• CREATE TABLE student (
 sid INTEGER PRIMARY KEY,
 name VARCHAR(100) NOT NULL,
 login VARCHAR(32) UNIQUE NOT NULL,
 major VARCHAR(3),
 adm_year DATE);

• CREATE TABLE enrollment(
 sid INTEGER REFERENCES student ON DELETE
SET NULL
 semester VARCHAR(3),
 cno INTEGER,
 grade NUMERIC(2, 1)
 PRIMARY KEY (sid, semester, cno));

CSE462/562 (Fall 2024): Lecture 2

Other DDL statements
• DROP TABLE table_name;

• ALTER TABLE table_name action [,…];
where action is one of
ADD column_name data_type [column_constraints [,…]]

DROP column_name data_type

ALTER coumn_name …

ADD table_constraint

DROP CONSTRAINT constraint_name

…

CSE462/562 (Fall 2024): Lecture 2

SQL DML
• SELECT statement

• INSERT statement

• DELETE statement

• UPDATE statement

CSE462/562 (Fall 2024): Lecture 2

SQL DML Semantics
• SQL uses multi-set semantics (aka bag semantics) by default

• meaning multiple tuples in the same table can have exactly the same values

• SQL also supports operators that can’t be expressed in the standard relational algebra

• sorting

• aggregation

• Standard Relational Algebra uses set semantics

• review in Lectures 5 & 6

CSE462/562 (Fall 2024): Lecture 2

Single-Table Query
• Single-table queries are straight-forward.

• To find all students admitted in 2021, we can write
 SELECT *
 FROM students S
 WHERE S.adm_year = 2021;

CSE462/562 (Fall 2024): Lecture 2

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

student

sid name login major adm_year

100 Alice alicer34 CS 2021

102 Charlie charlie7 CS 2021

result

Multi-Table Query
• We can express a join as follows

CSE462/562 (Fall 2024): Lecture 2

SELECT S.name, E.grade

FROM student S, enrollment E

WHERE S.sid=E.sid AND E.cno=562;

SELECT S.name, E.grade

FROM student S JOIN enrollment E

 ON S.sid = E.sid

WHERE E.cno = 562;

or

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

student

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

name grade

Alice 2.0

Charlie 2.3

Result

SQL Query Syntax
• SELECT and FROM clauses are mandatory
• WHERE clause is optional

• relation-list: a list of relation
• each possibly with a table alias (aka correlation name)

• target-list: a list of expressions that may reference columns in the relation
list
• “*” to denote all the columns in the relation list
• each may be renamed with AS clause (e.g., S.name as student_name)
• DISTINCT: an optional keyword to deduplicate the result

• predicate: boolean expressions over the columns in the relation list, may
contain
• comparisons such as <, >, <=, >=, =, <>, LIKE
• AND/OR/NOT
• nested query
• …

CSE462/562 (Fall 2024): Lecture 2

SELECT [DISTINCT] target-list

FROM relation-list

[WHERE predicate]

SQL supports string matching operator LIKE:
`_’ stands for any one character and `%’ stands for 0 or more arbitrary characters.
e.g., dname LIKE ‘%Engineering’ will match all departments that ends with
“Engineering” in its name

ORDER BY Clause
• Optional ORDER BY clause sorts the final results before presenting them to the

end user
• expr is some expression of the columns

in the relation list
• Sort lexicographically
• May also use positional notation (1, 2, 3, …)

• denotes expr in target list
• Default is ascending order ASC

• Specify DESC for descending order

• Examples
• ORDER BY E.grade DESC -- sort by descending order in grade
• ORDER BY 2 DESC -- same as above
• ORDER BY E.grade DESC, S.name

• sort by descending grade first; then for equal values of grade, sort by name in ascending
order

• ORDER BY 2 DESC, 1 ASC -- same as above

CSE462/562 (Fall 2024): Lecture 2

SELECT [DISTINCT] target-list

FROM relation-list

[WHERE predicate]

[ORDER BY] expr [ASC|DESC] [,…]

Other DML Statements
INSERT [INTO] table_name [(column_list)] VALUES (value_list);

INSERT [INTO] table_name [(column_list)] <select statement>;

DELETE [FROM] table_name [WHERE qualification];

UPDATE SET column_name = expr [,…] [WHERE qualification];

CSE462/562 (Fall 2024): Lecture 2

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Data abstraction
	Slide 3: Data abstraction
	Slide 4: Data models
	Slide 5: Relational model
	Slide 6: Relational model
	Slide 7: Relational model
	Slide 8: Integrity constraints
	Slide 9: Integrity constraints
	Slide 10: Integrity constraints
	Slide 11: Query Language
	Slide 12: Structured Query Language (SQL)
	Slide 13: DDL - Create Table
	Slide 14: DDL - Create Table w/ Column Constraints
	Slide 15: DDL - Create Table w/ Table Constraints
	Slide 16: DDL -Create Table (Examples)
	Slide 17: Other DDL statements
	Slide 18: SQL DML
	Slide 19: SQL DML Semantics
	Slide 20: Single-Table Query
	Slide 21: Multi-Table Query
	Slide 22: SQL Query Syntax
	Slide 23: ORDER BY Clause
	Slide 24: Other DML Statements

