
CSE462/562: Database Systems (Fall 24)

Lecture 3: Data Storage Layout

9/5/2024

Last Update: 9/5/24, 4:10 PM

Big Picture

CSE462/562 (Fall 2024): Lecture 4 2

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Buffer Management

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API

Disk Space Management
• Lowest layer of DBMS software manages space on disk

• Disk space is usually organized in pages
• which may not necessarily directly be mapped to disk sectors/file system pages!
• common choices are 4KB, 8KB, 16KB, etc.

• Using the OS file system or not? Some do and some don’t!
• Even with file system

• How to organize pages (in one file/multiple files)?
• How to deal with concurrency/recovery?
• …

• Higher levels call upon this layer to:
• allocate/de-allocate a page
• read/write a page

• Best if a request for a sequence of pages is satisfied by pages stored sequentially on disk!
• Responsibility of disk space manager.
• Higher levels don’t know how this is done, or how free space is managed.
• Though they may assume sequential access for files!

• Hence, disk space manager should do a decent job.

CSE462/562 (Fall 2024): Lecture 4 3

Disk Space Management in course project Taco-DB
• A flat main data storage page from page 0 to page 232 − 1

• Stored as 64GB files on the local file system;
• One instance of FSFile manage a real file in the file system (e.g., allocate/read/write a page).

• This is your task in Project 1 – lab 1.
• FileManager manages many virtual files (more on this next week)

• Each is a double-linked list of pages, allocated in groups of 64 consecutive pages
• Each file maintains its own free list

CSE462/562 (Fall 2024): Lecture 4 4

FileManager

0 4

…

M-4 M

…

2M-4

……

232-M

…

232 − 4

1 5 M-3 M+1 2M-3 232-M+1 232 − 3

2 6 M-2 M+2 2M-2 232-M+2 232 − 2

3 7 M-1 M+3 2M-1 232-M+3 232 − 1

Main Data Storage Space

FSFile FSFile FSFile……

Big Picture

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Disk space/File management

Query Execution

SQL Parser/API

Buffer Management

File Organization/Access Methods

CSE462/562 (Fall 2024): Lecture 4 5

Relational database
• A relational Database is logically a collection of tables (aka relations)

• Table schema: each table has one or more fields (aka columns)
• Each field has a type and (usually) a name

• Table instance: a table is a (multi-)set of records (aka rows/tuples)
• Each record has one value or NULL for each field in the table schema

• The field type dictates the set of valid values

sid name login

100 Alice alicer34

101 Bob bob5

102 Charlie charlie7

103 David davel

student

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

CSE462/562 (Fall 2024): Lecture 4 6

Database storage architecture
• Mapping from relational database to physical storage

• Database -> files

• Records -> contiguous bytes on fixed-size pages (e.g., 4KB)

• Assumption: each record fits in a page

• What if a record does not fit?

• What about relations?
One/several file(s) per relation? Mixing records from correlated relations in one/several file(s)?

sid name login

100 Alice alicer34

101 Bob bob5

102 Charlie charlie7

103 David davel

student

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

File
File

pagepage

pagepage

Record
Record

Record
Record

Record
Record
Record

Record
Record

CSE462/562 (Fall 2024): Lecture 4 7

Record format: fixed-length
• Fixed-length record

• Assuming all fields F1, F2, F3, … have known (maximum) length

• Denote the maximum lengths as L1, L2, L3, …

• Base address B: may be a file offset or a memory address

• Offset of field 𝐹𝑖 = σ𝑗=1
𝑖−1 𝐿𝑖

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address of F3 = B+L1+L2

Example: consider the enrollment table E(sid: INT4, semester: CHAR(3), cno: INT4, grade: FLOAT)

sid semester cno grade

0Offsets 4 7 11 15

CSE462/562 (Fall 2024): Lecture 4 8

Record format: fixed-length
• Fixed-length record

• How to handle NULLs?

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address of F3 = B+L1+L2

CSE462/562 (Fall 2024): Lecture 4 9

Record format: fixed-length
• Fixed-length record

• How to handle NULLs?

• Null bitmap: set the ith bit if Fi is NULL. Otherwise, clear the ith bit.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address of F3 = B+⌈#𝑁𝐹/8⌉+L1+L2

Example: consider the enrollment table E(sid: INT4, semester: CHAR(3), cno: INT4, grade: FLOAT), NF = 4

sid semester cno grade

0Offsets 5 8 12 16

Null bitmap

⌈#𝑁𝐹/8⌉

#NF: number of nullable fields

1

Null bitmap

CSE462/562 (Fall 2024): Lecture 4 10

Address alignment in records
• Address alignment requirements?

• Alignment example: to read/write a 32-bit integer in memory, its 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑚𝑜𝑑 4 == 0

• Most architecture has address alignment requirements

• Some strictly enforces alignment (most RISC arch, e.g., ARM v5 or earlier)

• Some don’t but have restrictions/performance loss/atomicity issues (e.g., x86_64/newer ARM)

• By default, compilers automatically align values properly

• DB records? Two choices:

• Pack everything, and memcpy the field before access

• Less efficient, but save space

• Align offsets manually

• More efficient field access, but waste space

struct A {

 int32_t x;

 int16_t y;

 int64_t z;

};

// alignof(A) == 8

// offsetof(A, x) == 0

// offsetof(A, y) == 4

// offsetof(A, z) == 8 (not 6!)

CSE462/562 (Fall 2024): Lecture 4 11

Address alignment in records
• Example: consider the enrollment table E(sid: INT4, semester: CHAR(3), cno: INT4, grade: FLOAT), NF = 4

• alignment requirements

• INT4: 4

• CHAR: 1

• FLOAT: 4

sid semester grade

0Offsets 5 8 12 161

Null bitmap

packed

aligned

cno

sid semester grade

0Offsets 118 12 161

Null bitmap cno

4 24

padding

Is there any assumption for the fields in an aligned record to be really aligned?
 Base address B must be aligned to the strictest alignment requirement. (depends on arch, OS and DB type system)

CSE462/562 (Fall 2024): Lecture 4 12

Record format: fixed-length
• Problem with fixed-length record?

• What if we have a variable-length field whose maximum length >> average length

• Wastes space

Example: consider the student table S(sid: INT4, name: VARCHAR(128), login: VARCHAR(32))

aligned

sid name login

0Offsets 8 1361

Null bitmap

4 168

Solution: variable-length records

CSE462/562 (Fall 2024): Lecture 4 13

Record format: variable-length
• Variable-length record

• Two approaches:

• Encode field length in an offset array (e.g., stores the end offset of each field)

• random access to fields given B, but takes more space

• Using self-contained data field (with separator/encoded length)

• Computed offsets (e.g., offset of F3 = L1 + L2); but may be more compact

\0

Field Delimited by Special Symbols

F1 F2

\0

Field Delimited prefixed with its length

10 20

10 20 30 50

F3 F4

F1 F2 F3 F4

Base address (B)

CSE462/562 (Fall 2024): Lecture 4 14

Record format: variable-length
• Example: consider a record in S with (sid = 100, name = ‘Alice’, login = ‘aa’), NF = 3

• Two approaches:

• Encode field length in an offset array (e.g., stores the end offset of each field)

• assuming offsets are stored as int16_t

• Using self-contained data field (with separator/encoded length)

• Computed offsets (e.g., offset of F3 = L1 + L2); but may be more compact

aligned

sid name login

0Offsets 8 17

100 Alice aa0

1

Null bitmap

2 19

12

4

17 19

6

end offsets

12 24

aligned

sid name login

0Offsets 8 17

100 Alice\0 aa\00

1

Null bitmap

4 14 24

CSE462/562 (Fall 2024): Lecture 4 15

Record format: variable-length
• Example: consider a record in S with (sid = 100, name = ‘Alice’, login = ‘aa’), NF = 3

• Many possible designs with minor tweaks for different space/time efficiency trade-offs

• Can also combine both fixed-length and variable-length record formats

• Encode field length in an offset array (e.g., stores the end offset of each field)

• assuming offsets are stored as int16_t

• Example tweaks and assumption:

• Fixed-length fields appear before variable-length fields => have fixed offsets

• (Real) record length without the trailing padding stored somewhere else

aligned

sid name login

0Offsets 8 15

100 Alice aa0

1

Null bitmap

2 4

13

end offsets

13

sid name login

0Offsets 8 17

100 Alice aa0

1

Null bitmap

2 19

12

4

17 19

6

end offsets

12 24

CSE462/562 (Fall 2024): Lecture 4 16

Page layout for fixed-length records
• Why not storing record consecutively in a file?

• Linear time to update/delete!

• How do we store records in fixed-size pages?
• Fixed-length record: easy (packed vs unpacked)

• Not commonly used as it wastes space

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

number
of records

number
of slots

CSE462/562 (Fall 2024): Lecture 4 17

Page layout for variable-length records
• What about variable-length records?

• Solution: slotted data page Page i

Rid = (i,N)

Rid = (i,1)

Rid = (i,2)

offset
to the free space

Slot array

N . . . 2 1

20 100 40 N

slots

Stores offsets to the beginning of the page

Free space

Free space

Can move records within a page without changing its record id.

CSE462/562 (Fall 2024): Lecture 4 18

Page layout for variable-length records
• What about variable-length records?

• Solution: slotted data page Page i

Rid = (i,N)

Rid = (i,1)

Rid = (i,2)

offset
to the free space

Slot array

N . . . 2 1

20 100 40 N

slots

Stores offsets to the beginning of the page

Free space

Occupied space

Design space:
• Store record length with record / in slot array? Alignment?
• Allow free space within the occupied space?

• Eager vs lazy compaction?
• Optional page header? CSE462/562 (Fall 2024): Lecture 4 19

Organizing pages in a heap file
• Heap file is the most basic and common way of managing pages for a single relation

• Consists of a collection of fixed-size pages

• Pages/records are unordered

• Heap files must support
• Efficient insertion/deletion/update of records

• Efficient access of a record

• Efficient enumeration of all the records

• Management of free space (also managed by disk space manager/file system)

• Note
• A heap file does not necessarily map to a single file on FS

• A heap file can span multiple FS files (e.g., PostgreSQL)

• A file on FS does not necessarily only store pages for a single heap file

• All heap files are stored in a single FS File (i.e., single-file DBMS such as SQLite)

• Our course project Taco-DB: stores pages of different heap files across a number of files on FS
CSE462/562 (Fall 2024): Lecture 4 20

Organizing pages in a heap file
• Many possible alternatives and variants

• We consider the most representative two of them

CSE462/562 (Fall 2024): Lecture 4 21

Heap file alternative 1: doubly-linked lists

• The header page id and Heap file name must be stored someplace.

• Database catalog

• Each page contains 2 `pointers’ plus data.
• What are these pointers? Page Number and/or File ID?

• Supports sequential access
• Random access? Only if you know the page number (and the underlying file system supports random seek)

• Does enumerating the pages through the next pointers always incur sequential I/O?
• Not necessarily! Depending on how you allocate pages.

Meta
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Free pages

Allocated Pages

CSE462/562 (Fall 2024): Lecture 4 22

Heap file alternative 2: page directory

• The entry for a page can include the number of free bytes on the page.
• Or use free space bitmap in a (separate) contiguous space.

• The directory is a collection of pages; linked list implementation is just one alternative.
• Can also allocate contiguous pages for page directory for faster random access

and/or using hierarchical page directory

• PD is much smaller than the all data pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

CSE462/562 (Fall 2024): Lecture 4 23

Database catalog
• How does DBMS remember the layout?

• Catalogs are DBMS defined relations that
• stores meta-information about

• Relation schemas
• Physical storage format and location
• And many other important internal states

• Can be implemented as regular relations

TABID TABNAME TABFPATH

1 TABLE /dbdata/1

2 COLUMN /dbdata/2

100 STUDENT /dbdata/100

101 ENROLLMENT /dbdata/101

Table

TABID COLID COLNAME COLTYPNAME

1 0 TABID OID

1 1 TABNAME VARCHAR(64)

1 2 TABFPATH VARCHAR(256)

2 0 TABID OID

2 1 COLID INT2

2 2 COLNAME VARCHAR(64)

2 3 COLTYPNAME VARCHAR(64)

100 0 SID SERIAL

100 1 NAME VARCHAR(32)

100 2 LOGIN VARCHAR(40)

101 0 SID INTEGER

101 1 SEMESTER CHAR(3)

101 2 CNO INTEGER

101 3 GRADE DOUBLE

Column

CSE462/562 (Fall 2024): Lecture 4 24

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Big Picture
	Slide 3: Disk Space Management
	Slide 4: Disk Space Management in course project Taco-DB
	Slide 5: Big Picture
	Slide 6: Relational database
	Slide 7: Database storage architecture
	Slide 8: Record format: fixed-length
	Slide 9: Record format: fixed-length
	Slide 10: Record format: fixed-length
	Slide 11: Address alignment in records
	Slide 12: Address alignment in records
	Slide 13: Record format: fixed-length
	Slide 14: Record format: variable-length
	Slide 15: Record format: variable-length
	Slide 16: Record format: variable-length
	Slide 17: Page layout for fixed-length records
	Slide 18: Page layout for variable-length records
	Slide 19: Page layout for variable-length records
	Slide 20: Organizing pages in a heap file
	Slide 21: Organizing pages in a heap file
	Slide 22: Heap file alternative 1: doubly-linked lists
	Slide 23: Heap file alternative 2: page directory
	Slide 24: Database catalog

