
CSE462/562: Database Systems (Fall 24)

Lecture 8: Query Processing Overview

9/19/2024

Last updated: 9/10/2024 9:35 AM

Big picture

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Disk space/File management

SQL Parser/API

Buffer Management

File Organization/Access Methods

Query Processing & Optimization

CSE462/562 (Fall 2024): Lecture 8 2

What’s discussed so far
• The lower-level storage layer in DBMS

• Disk/file space management

• Buffer management

• File organization

• Access methods

• Indexing

• How to answer queries/perform updates?
• Relational algebra vs SQL

• Correctness?

• Efficiently?

• Query processing & optimization

student

sid semester cno grade

100 s22 562 4.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

Find the names and the grades of all the students
enrolled in the course 562 who were admitted in the
year of 2021?

CSE462/562 (Fall 2024): Lecture 8 3

Simple select query and relational algebra
• Recall that the basic form of SELECT query can be translated into extended relational algebra

• The conceptual way of answering the query
• With some non-relational operators (notably Sort).

-- SQL with aggregation
SELECT 𝐸′1, 𝐸′2, … , 𝐸′

𝑚, 𝐹1 𝐸1
′′ , … , 𝐹𝑘 𝐸𝑘

′′

FROM 𝑅1, 𝑅2, … , 𝑅𝑛

[WHERE 𝑃]
[GROUP BY 𝐸1, 𝐸2, … , 𝐸𝑙

[HAVING 𝑃′]]

[ORDER BY expr [ASC|DESC] [,…]]

-- SQL SELECT with no aggregation
SELECT [DISTINCT] 𝐸1, 𝐸2, … , 𝐸𝑚

FROM 𝑅1, 𝑅2, … , 𝑅𝑛

[WHERE P]

[ORDER BY expr [ASC|DESC] [,…]]

𝑆𝑜𝑟𝑡 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝜋𝐸1,𝐸2,…𝐸𝑚
𝜎𝑃𝑅1 × 𝑅2 × ⋯ × 𝑅𝑛

non-relational

𝑄 ← 𝜎𝑃𝑅1 × 𝑅2 × ⋯ × 𝑅𝑛

𝑆𝑜𝑟𝑡 𝜋𝐸′
1,𝐸′

2,…,𝐸′
𝑚,𝐹1 𝐸1

′′ ,…,𝐹𝑘 𝐸𝑘
′′ 𝜎𝑃′ 𝐸1,𝐸2,…,𝐸𝑙

𝛾𝐹1 𝐸1
′′ ,…𝐹𝑘 𝐸𝑘

′′ 𝑄

CSE462/562 (Fall 2024): Lecture 8 4

Query processing overview
• DBMS translates SQL to a special internal language

• Query plans

• logical: extended relational algebra with some non-relational operators

• physical: describes the actual implementation of the operators

• Think of query plans as data-flow graphs
• Edges: flow of records

• Vertices: relational and non-relational operators

• Input/Output of the operators: relations

• Three stages of query processing
• Parsing & query rewriting: SQL -> logical plan

• Query optimization:
logical plan -> optimized logical plan -> physical plan

• Query execution: evaluating the physical plan over the database

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

An example of logical plan

CSE462/562 (Fall 2024): Lecture 8 5

Logical plan

Query processing overview

SQL Query
SELECT S.name,E.grade

FROM student S, enrollment E

WHERE S.sid = E.sid

 AND S.adm_year = 2021

 AND E.cno = 562;

ODBC/JDBC/
command
line frontend

SQL
Parser* (Extended) Relational Algebra

𝜋𝑆.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562𝑆 ⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

* include multiple intermediate steps (e.g., parsing
tree/analysis/rewriting)

Internally represented as

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

Query
Optimizer

Physical plan

Index Scan
student S

Index Scan
enrollment E

Index Nested
Loop Join

𝜋𝑆.𝑛𝑎𝑚𝑒,𝑆.𝑠𝑖𝑑

𝜋𝑆.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

Query
Execution

**

** This picture by oksmith is licensed under CC0

Query result
S.name | E.grade

Alice | 4.0

Charlie| 2.3

(2 rows)

CSE462/562 (Fall 2024): Lecture 8 6

https://openclipart.org/detail/312062/female-computer-user-16c
https://openclipart.org/artist/oksmith
https://creativecommons.org/publicdomain/zero/1.0/

Parsing and query rewriting
• SQL Parser are usually generated from a context-free grammar using compiler tools

• e.g., antlr (LL grammar), lex+yacc/flex+bison (LR grammar/LALR(1) grammar)
• We’ll omit the details which are covered in compiler courses
• Produces a parse tree for a SQL query

• Analysis and transformation into logical plan
• A parse tree represents the syntactical structure of a SQL query -- not suitable for query processing
• Needs to be translated into a logical plan
• Catalog information helps resolving tables/columns/types/expressions/functions

• Query rewriting
• User defined/system defined rules for transforming queries (e.g., non-materialized views, customized rewriting rules)

SQL Query
SELECT S.name, E.grade

FROM student S, enrollment E

WHERE S.sid = E.sid

 AND S.adm_year = 2021

 AND E.cno = 562;

Logical plan

expr
Scan student

S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒
Parse tree stmt_or_cmd

select_stmt

SELECT target_list from_clause where_clause

target_listexpr , WHEREFROM from_list

……

expr

Parsing
Analysis &
Transformation

Query rewriting

CSE462/562 (Fall 2024): Lecture 8 7

Query optimization (a preview)
• Many equivalent plans exist for the same query

• Efficiency varies

• Query optimization
• Finding the best a not-too-bad plan with reasonable overhead

• Generally divided into two phases

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021 𝜎𝐸.𝑐𝑛𝑜=562

Logical Plan Optimized Logical Plan

Index Scan
student S

Index Scan
enrollment E

Index Nested
Loop Join

𝜋𝑆.𝑛𝑎𝑚𝑒,𝑆.𝑠𝑖𝑑

𝜋𝑆.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

Physical Plan

Logical
optimization

Physical
optimization

CSE462/562 (Fall 2024): Lecture 8 8

Query execution
• Query executor needs to evaluate the result of a physical plan over a database instance

• Query interpretation vs compilation
• To date, most DBMS uses a single piece of binary code that “interprets” the query plans

• Uses run-time information to determine which function(s) to call

• Easy to implement with runtime polymorphism (e.g., C++/Java/Scala)

• Some modern DBMS compiles query plans into binary code for efficiency (e.g., [1])

• Avoids virtual function call overhead in tight loops

• More efficient for queries over large database

• Overhead for compilation (LLVM to the rescue) and a bit harder to implement

• Can take hybrid approach:

• e.g., only compiling expression trees into binary code, while interpreting the physical plan

[1] Efficiently Compiling Efficient Query Plans for Modern Hardware. Thomas Neumann, 2011.

CSE462/562 (Fall 2024): Lecture 8 9

Query execution (cont’d)
• Pull-based vs push-based query execution

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

pull

pull

pull

𝑡1 𝑡2

𝑡3

𝑡4

Pull-based query execution
• Start from root and pull data from children
• Tuple passed via recursive function calls.
• Virtual function call/function dispatch overhead

CSE462/562 (Fall 2024): Lecture 8 10

Query execution (cont’d)
• Pull-based vs push-based query execution

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

𝑡1 𝑡2

𝑡3

𝑡4

push

push

push

Push-based query execution
• Start from leaf and push data to parent
• Allows more efficient use of cache/registers in pipelines

• when used with query compilation

CSE462/562 (Fall 2024): Lecture 8 11

Query execution (cont’d)
• Pull-based vs push-based query execution

• Pipelining vs materialization

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

𝑡1, 𝑡2, … , 𝑡𝑛 𝑡1
′ , 𝑡2

′ , … , 𝑡𝑚′

𝑡1
′′, 𝑡2

′′, … , 𝑡𝑘
′′

𝑡𝑖1

′′ , 𝑡𝑖2

′′ , … , 𝑡𝑖𝑙

′′

𝑡1
′′′, 𝑡2

′′′, … , 𝑡𝑙
′′′

CSE462/562 (Fall 2024): Lecture 8 12

Query execution models
• Several models for implementing the operators

• Volcano model (aka iterator model)
• most traditional and widely used one
• pull-based execution

• Materialization model
• Vectorization model

• Running example
SELECT * FROM student
WHERE major=‘CS’ ORDER BY adm_year;

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

CSE462/562 (Fall 2024): Lecture 8 13

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Big picture
	Slide 3: What’s discussed so far
	Slide 4: Simple select query and relational algebra
	Slide 5: Query processing overview
	Slide 6: Query processing overview
	Slide 7: Parsing and query rewriting
	Slide 8: Query optimization (a preview)
	Slide 9: Query execution
	Slide 10: Query execution (cont’d)
	Slide 11: Query execution (cont’d)
	Slide 12: Query execution (cont’d)
	Slide 13: Query execution models

