CSE462/562: Database Systems (Fall 24)
Lecture 8: Query Processing Overview
9/19/2024

University at Buffalo

s Department of Computer Science
and Engineering
School of Engineering and Applied Sciences

Last updated: 9/10/2024 9:35 AM

Big picture

User applications

DBMS

SQL Parser/API

Query Processing & Optimization

File Organization/Access Methods

Buffer Management

Disk space/File management

Operating System

Hardware devices

CPU

s —

CSE462/562 (Fall 2024): Lecture 8

e
Secondary
Storages

What’s discussed so far student

* The lower-level storage layer in DBMS ﬂmmm

* Disk/file space management 100 Alice alicer34 2021
 File organization 102 Charlie charlie7 CS 2021
* Access methods 103 David davel CS 2020
* Indexing Find the names and the grades of all the students
enrolled in the course 562 who were admitted in the
year of 20217
 How to answer queries/perform updates? 100 522 562 4.0
* Relational algebra vs SQL 102 s22 562 2.3
e Correctness? 100 f21 560 3.7
* Efficiently? 101 s21 560 3.3
102 f21 560 4.0
* Query processing & optimization 103 522 460 2.7
101 f21 560 3.3
103 f21 250 4.0

CSE462/562 (Fall 2024): Lecture 8

Simple select query and relational algebra

e Recall that the basic form of SELECT query can be translated into extended relational algebra
* The conceptual way of answering the query
* With some non-relational operators (notably Sort).

non-relational
-- SQL SELECT with no aggregation
SELECT [DISTINCT] E{, E5, ..,Enpn
FROM R{,R,,...,R,
[WHERE P]
[ORDER BY expr [ASC|DESC] [,..]]

Sort (Distinct(nEl,EZ,_“EmapRl X Ry, X -+ X Rn))

-- SQL with aggregation

SELECT E'\,E'5, ... E';y, FL(E]), ..., F (EY)
FROM Ry, Ry, .., R,

[WHERE P]

[GROUP BY El’ Ez, B El SOTt (T[E’I'EIZI"'IE,m'Fl(E{,)""'Fk(EI,C,)O-P’ (El’EZ""’ElyFl(E{’)""FR(EI’C’)Q))
[HAVING P']]
[

ORDER BY expr [ASC|DESC] [,..]]

Q « 6pRy X Ry X -+ X R,

CSE462/562 (Fall 2024): Lecture 8 4

Query processing overview

 DBMS translates SQL to a special internal language
* Query plans

* logical: extended relational algebra with some non-relational operators O
7Ts.name,E.grade

* physical: describes the actual implementation of the operators

* Think of query plans as data-flow graphs
* Edges: flow of records
* Vertices: relational and non-relational operators
* |Input/Output of the operators: relations

* Three stages of query processing
* Parsing & query rewriting: SQL -> logical plan

* Query optimization:
logical plan -> optimized logical plan -> physical plan

* Query execution: evaluating the physical plan over the database

CSE462/562 (Fall 2024): Lecture 8

A

O-S.adm_year=202 1/\@
A

N sid=FE.sid

An example of logical plan

Query processing overview

* include multiple intermediate steps (e.qg., parsing
tree/analysis/rewriting)

oDBc/iDBC/ | SQL Query

command SELECT S.name,E.grade saL
ine frontend | EROM student S, enrollment E Parser* | (Extended) Relational Algebra
WHERE S.sid = E.sid |:> T[S.name,E.gradeGS.adm_year=2021AE.cno=56ZS Mg sid=E.sid E
AND S.adm year = 2021
AND E.cno = 562; Internally represented as @
Physical plan Logical plan Q
s name,E.grade
Query :
Query Optimizer
Query result Execution ndex Nested <:| @’:2021"@
Loop Join 7
S.name | E.grade
Alice | 4.0
. X cid=F sic
Charlie| 2.3 S.sid=E.si
(2 rows)

Index Scan Scan
student S enrollment E enrollment

CSE462/562 (Fall 2024): Lecture 8 6

** This picture by oksmith is licensed under CCO

https://openclipart.org/detail/312062/female-computer-user-16c
https://openclipart.org/artist/oksmith
https://creativecommons.org/publicdomain/zero/1.0/

Parsing and query rewriting

* SQL Parser are usually generated from a context-free grammar using compiler tools
* e.g., antlr (LL grammar), lex+yacc/flex+bison (LR grammar/LALR(1) grammar)
* WEe’ll omit the details which are covered in compiler courses
* Produces a parse tree for a SQL query

* Analysis and transformation into logical plan

* A parse tree represents the syntactical structure of a SQL query -- not suitable for query processing
* Needs to be translated into a logical plan

» Catalog information helps resolving tables/columns/types/expressions/functions
* Query rewriting

User defined/system defined rules for transforming queries (e.g., non-materialized views, customized rewriting rules)

Query rewriting m

| Parse tree stmt_or_cmd Logical plan @
Parsing | Analysis & 4
|:> select_stmt T f i
sQL Query ransjormation < osam year-zasenomsez >

SELECT S.name, E.grade SELECT target _list from_clause where_clause *
FROM student S, enrollment E /\ /\ M
WHERE S.sid = E.sid

AND S.adm year = 2021 expr , target list FROM from_list WHERE expr

AND E.cno = 562; /N AN /N

CSE462/562 (Fall 2024): Lecture 8

Scan
enrollment E

Query optimization (a preview)

* Many equivalent plans exist for the same query
 Efficiency varies

* Query optimization

* Finding the-best a not-too-bad plan with reasonable overhead

* Generally divided into two phases
Logical Plan

O-S.adm_year=2021/\@

N sid=E.sid

s name,E.grade

Logical X
optimization

N sid=E.sid

Scan
student S

CSE462/562 (Fall 2024): Lecture 8

Optimized Logical Plan

Scan
enroliment

Physical Plan

s name,E.grade

ndex Nested
Loop Join

Index Scan Index Scan
student S enrollment E

Physical
optimization

Query execution

* Query executor needs to evaluate the result of a physical plan over a database instance

* Query interpretation vs compilation

* To date, most DBMS uses a single piece of binary code that “interprets” the query plans
e Uses run-time information to determine which function(s) to call
* Easy to implement with runtime polymorphism (e.g., C++/Java/Scala)

 Some modern DBMS compiles query plans into binary code for efficiency (e.g., [1])
* Avoids virtual function call overhead in tight loops
* More efficient for queries over large database
e Overhead for compilation (LLVM to the rescue) and a bit harder to implement

e Can take hybrid approach:
e e.g., only compiling expression trees into binary code, while interpreting the physical plan

[1] Efficiently Compiling Efficient Query Plans for Modern Hardware. Thomas Neumann, 2011.
CSE462/562 (Fall 2024): Lecture 8

Query execution (cont’d)

* Pull-based vs guery execution
Pull-based query execution
e Start from root and pull data from children
* Tuple passed via recursive function calls. ;
« Virtual function call/function dispatch overhead ~*

pull
0s.adm year=202 1/\@
t

pUl 1 @ N sid=E.sid
Scan
pull enrollment

tq)

CSE462/562 (Fall 2024): Lecture 8

10

Query execution (cont’d)

* Pull-based vs guery execution

Push-based query execution
* Start from leaf and push data to parent

* Allows more efficient use of cache/registers in pipelitnes

* when used with query compilation

4

T[s.name,E.grade
0s.adm year=202 1/\@
t

N sid=E.sid

Scan
enrollment

CSE462/562 (Fall 2024): Lecture 8

11

Query execution (cont’d)

* Pull-based vs guery execution
* Pipelining vs materialization
t{ll, té,’, ., tlIII

7Ts.name,E.grade

I’ r r
t; , 6, t

11’ "2 b
0s.adm year=202 1/\@

144 I’ 144
tl,tz,...,tk

N sid=E.sid

Scan
enrollment

t1,to, ., ty t1,t5, vty

CSE462/562 (Fall 2024): Lecture 8

12

Query execution models

* Several models for implementing the operators
* Volcano model (aka iterator model)
e most traditional and widely used one
e pull-based execution
* Materialization model
* Vectorization model

* Running example
SELECT * FROM student
WHERE major=‘CS’ ORDER BY adm year;

Internal sort by

adm_year
y

A

Heap Scan
student S

CSE462/562 (Fall 2024): Lecture 8

13

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Big picture
	Slide 3: What’s discussed so far
	Slide 4: Simple select query and relational algebra
	Slide 5: Query processing overview
	Slide 6: Query processing overview
	Slide 7: Parsing and query rewriting
	Slide 8: Query optimization (a preview)
	Slide 9: Query execution
	Slide 10: Query execution (cont’d)
	Slide 11: Query execution (cont’d)
	Slide 12: Query execution (cont’d)
	Slide 13: Query execution models

