# CSE462/562: Database Systems (Fall 24) Lecture 10: Single-table query processing: Selection, Projection & Expression Evaluation 9/26/2024



Last updated: 10/9/2024 3:00 PM

# Single-table queries

- We'll start with the simplest single-table queries w/o or w/ aggregations
	- How to translate it into a query plan?
	- How to implement each operator?
	- How to measure the cost of each operator?



```
SELECT G, SUM(E)FROM RWHERE PGROUP BY G
HAVING P'ORDER BY S
```
# SQL -> logical plan

- We'll start with the simplest single-table queries w/o or w/ aggregations
	- How to translate it into a query plan?
	- How to implement each operator?
	- How to measure the cost of each operator?



# Logical plan -> physical plan

- We'll start with the simplest single-table queries w/o or w/ aggregations
	- How to translate it into a query plan?
	- How to implement each operator?
	- How to measure the cost of each operator?

- A few basic operators
	- Selection:  $\sigma$
	- Projection:  $\pi$  (w/ and w/o deduplication)
	- Aggregation:  $\gamma$  w/o or w/ group by
	- Set operators: U, -,∩
	- Sorting (later lectures)
	- Cartesian product:  $\times$  or Join:  $\bowtie$  (later lectures)
- Question: what are the alternatives? How to evaluate their efficiency?

## Measuring cost

- We'll start with the simplest single-table queries w/o or w/ aggregations
	- How to translate it into a query plan?
	- How to implement each operator?
	- How to measure the cost of each operator?
- For disk-based systems, we mainly measure the number of I/Os
	- Differences between random I/O and sequential I/O
	- Faster storage -> also need to measure the CPU cost
- A simple cost model
	- $t_T$ : average time to transfer a page of data (data transfer time)
	- $t_S$ : average time to randomly seek data (seek time + rotation delay)
		- For SSD, time overhead for initiating an I/O request
	- Cost =  $N_T \times t_T + S \times t_S$ 
		- $N_T$ : number of pages read/written; S: number of random I/O

Typical  $t_T$  and  $T_s$ 

|                  | HDD* | <b>SSD+</b> |
|------------------|------|-------------|
| $t_T$ (ms)       | 0.1  | 0.01        |
| $t_{\rm S}$ (ms) |      | 0.09        |

Data from DB Concept book (Ch. 15.2). Assuming 4KB pages.

- \* typical HDD with 40 MB/s transfer rate,
- 15000 rpm disk in 2018
- † typical SATA SSD that supports 10K IOPS (QD-

1), 400 MB/s sequential read rate

#### Measuring cost

- Other assumptions
	- Ignoring the buffer effect for random pages
		- Do consider the private workspace size  $M$  for the operators
	- Omitting the cost of transferring output to the user/disk
		- Common to any equivalent plan
- Notations: for relation  $R$ 
	- $T_R$ : number of records,  $N_R$ : number of pages in its heap file,  $B_R$ : (average) number of tuples per page
	- $h_I$ : height of a B-tree index  $I$  over the file
	- $M$ : private workspace size in pages
- Running example
	- $t_s = 4$  ms,  $t_T = 0.1$  ms, 4000-byte page
	- Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm\_year: int)
		- 50 bytes/tuple,  $B_R = 80$ ,  $T_R = 40,000$ ,  $N_R = 500$
	- Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)
		- 20 bytes/tuple,  $B_F = 200$ ,  $T_F = 200,000$ ,  $N_F = 1000$

#### Selection  $\sigma$

- Scan is usually the leaf-level of logical plans
	- Represents reading an entire relation -- not really a relational operator
- Selection  $\sigma_P Q$ 
	- P is usually conjunctions or disjunctions Q.  $attr$  op value but can also be User-Defined Functions (UDF)
	- selects records satisfying some predicate from the child
	- Child may be a scan or some other operators
	- Many possible implementation of selection depending on
		- $\bullet$  the predicate  $P$
		- the available file/index for the scan

*op is an operator: <, <=, =, <>, >, >=, …*





# Simple selection: linear scan

- Consider a simple selection  $\sigma_{R.attr\ op\ value}R$ 
	- Assume that the child is a relation stored in some disk file/index
- Most straight-forward implementation is linear scan
	- Scan each page and each record on the page
		- emits a record only if the predicate  $R$ .  $attr$  op  $value$  evaluates to true
	- Applies to any predicate  *or file*
	- Also works for pipelining -- can do selection on the fly without writing temporary files
- Cost:  $t_S + N_R \times t_T$ 
	- 1 seek to the start of the file and  $N_R$  pages to read
	- the "last resort" -- usually the slowest implementation
	- cost for  $\sigma_{adm\ year=2021}$   $R: t_S + 500 \times t_T = 54$  ms



*Logical plan for*  $\sigma_{adm\ year = 2021}R$ 

## Simple selection: index scan

 $T:$  # of matching records  $F:$  # of data entries per leaf page N: # of pages with matching records

- If the file has an index *I* over the search key  $k \in [K_{lo}, K_{hi}]$
- Assuming selectivity is  $s = 0.1$ , the number of matching records is T and the number of pages with matching records is  $N$ ,  $cost =$ 
	- Cost for finding qualifying data entries  $I(N) = I_S(N)t_S + I_T(N)t_T$ 
		- $I_{\rm S}(N)$  : how many random accesses in the index before reaching the first data entry
		- $I_T(N)t_T$ : how many pages in total were accessed, including those containing the data entries
	- + Cost for retrieving the heap records  $H(N) = H_S(N, T) t_S + H_T(N, T) t_T$ 
		- $H_S(N, T)$ : how many random accesses in the heap file
		- $H_T(N, T)$ : how many pages in total were accessed in the heap file
	- Cost varies depending on the layout, selectivity of predicates and many other factors!

#### Clustered vs unclustered index

• Assuming data entries contain key and record id in the index (i.e., alternative 2).



#### Access cost of clustered vs unclustered index

- Assuming data entries contain key and record id in the index (i.e., alternative 2).
	- Cost of range scan with  $n$  matching data records in a B-Tree
		- assuming we ignore the buffer pool's effect
		- clustered:  $H + \left[\frac{n}{M}\right]$  $\boldsymbol{M}$ I/Os
		- unclustered:  $H + \frac{n}{R}$  $\boldsymbol{B}$  $-1 + n$  I/Os



# General selection predicates

- Atom predicate: attr op value or UDF
- General predicates:
	- Conjunction  $\wedge$  (and), disjunction  $\vee$  (or), negation  $\neg$  (not) of atoms or general predicates
	- e.g.,  $\sigma_{(adm\_year)=2019 \vee major='CS')}$   $\wedge$  sid >= 1000 $R$
- Most general cases can always be handled by linear scans
	- Slow!
- Optimization for special cases:
	- Conjunction of simple selection predicates  $\theta_1 \wedge \theta_2 \wedge \cdots \wedge \theta_r$ 
		- where  $\theta_i$  is an atom
	- Disjunction of selection predicates  $\theta_1 \vee \theta_2 \vee \cdots \vee \theta_r$
	- Transforming a predicate P into *Conjunctive Normal Form (CNF)* or *Disjunction Normal Form (DNF)* for additional optimization opportunities
		- e.g.,  $\left(\text{adm\_year} > \text{=} 2019 \text{ V major} = 'CS'\right) \land \text{sid} >= 1000 \text{ (CNF)}$  $\Leftrightarrow$   $\left(\text{adm\_year} > \text{= } 2019 \land \text{sid} \geq 1000\right) \lor \left(\text{major} = ' CS' \land \text{sid} \geq 1000\right)$  (DNF)

# Conjunctive selection with one index

- $\theta_1 \wedge \theta_2 \wedge \cdots \wedge \theta_r$ 
	- Choosing one or a prefix of predicates that can be answered using one index
		- Apply the rest of the predicates over the result on the fly
	- For instance, a B-Tree over  $(f_1, f_2)$  can select for predicates over a prefix of its index keys
		- $f_1$  *op value* (where  $op \in \{<, \leq, =, >, \geq\})$
		- $f_1 = value \land f_2$  op value (where op  $\in \{<, \leq, =, >, \geq\}$ )
		- If allow using skip scan (jump scan),  $f_2$  op value or  $f_1$  op value  $\wedge f_2$  op value
	- What if there're multiple choices?
		- Considerations: selectivity, type of indexes, actual cost (access path selection in QO)
	- Cost is the same as index scans/bitmap index scans

# Conjunctive selection with multiple indexes

- $\theta_1 \wedge \theta_2 \wedge \cdots \wedge \theta_r$ 
	- What if the atoms or several conjunctions of atoms can be answered by different indexes?
	- Example:  $\sigma_{major="CS}'$   $\land$   $adm\_year=$  2021 $R$  when we have two indexes  $I_1 (major)$  and  $I_2 (adm\_year$
- Algorithm:
	- 1. Collect all the RIDs using both indexes
	- 2. Compute the intersection of the RIDs
	- 3. Fetch the heap records of the RIDs in the result set
- Cost: index search + collecting data entries+ sort + intersection + fetching heap records

# Partial matches for conjunctive selection

- $\theta_1 \wedge \theta_2 \wedge \cdots \wedge \theta_r$ 
	- What if only part of the predicates can be optimized with indexes
		- Apply the remaining predicates over the result and discard those that do not satisfy
		- e.g., $\sigma_{major='CS'}$   $\land$   $adm\_year=$  2021 with a hash index  $I(major)$ 
			- Index Scan for all CS majors using  $I(major)$
			- Apply the predicate  $adm$   $year = 2021$  over the heap records on the fly
		- Note the remaining predicates do not need to be in conjunctive normal form!
			- Can be arbitrary predicates (e.g., UDF)

# Disjunction selection with multiple indexes

- $\theta_1 \vee \theta_2 \vee \cdots \vee \theta_r$ 
	- Only optimizable if all clauses  $\theta_i$  can be optimized using some index
	- Otherwise, fall back to linear scan
- Algorithm:
	- 1. Collect all the RIDs using both indexes
	- 2. Compute the union of the RIDs
	- 3. Fetch the heap records of the RIDs in the result set
- Cost: index search + collecting data entries+ sort + union + fetching heap records

#### An excursion: expression evaluation

- So far, we assume expression evaluation is a black box
	- Does the predicate evaluate to true in selection?
	- Projection list evaluation?

• …

- How does it work?
	- How costly are they?

#### Expression tree

- A tree that represents an expression
	- Leaf nodes: literals, variables
	- Internal nodes: operators  $(+, -, *, /, ...)$ , function calls, ...
- Expressions in QP are attached to a plan node
	- Variables refers to columns in the output of some plan node
		- usually output from child, but could be intermediate outputs within certain operators
- Example: predicate  $adm\_year >= 2019 \vee major = 'CS'$





#### Expression evaluation

- Interpretation vs Compilation
	- type checking?
- In the course project Taco-DB, we use interpretation (for ease of implementation)
	- recursive evaluation through  $Eval()$  calls



# Projection  $\pi$

- Without deduplication
	- evaluate projection list for the records on the fly
	- cost: no additional I/O
	- sometimes baked into other operators (i.e., all operators can be followed by an implicit projection)
- With deduplication
	- Requires materialization (blocking)
	- Hash or Sort
		- Hash -> build a hash table where duplicates are dropped
		- Sort -> emit a record only if it is the first record or it is different from the previous one
	- Result set fits in memory => easy to implement (does not add I/O cost)
	- When result sets exceed configured workspace size  $M$ ,
		- Need to use external hashing and sorting algorithms (next lecture)
		- Optimization opportunities
		- Will come back to this later after we discuss external hashing and sorting