
CSE462/562: Database Systems (Fall 24)

Lecture 10: Single-table query processing:

Selection, Projection & Expression Evaluation

9/26/2024

Last updated: 10/9/2024 3:00 PM

Single-table queries
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?

• How to implement each operator?

• How to measure the cost of each operator?

CSE462/562 (Fall 2024): Lecture 10 2

SELECT 𝐺, 𝑆𝑈𝑀 𝐸
FROM 𝑅
WHERE 𝑃
GROUP BY 𝐺
HAVING 𝑃′

ORDER BY S

SELECT 𝐸
FROM 𝑅
WHERE 𝑃

ORDER BY S

SQL -> logical plan
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?

• How to implement each operator?

• How to measure the cost of each operator?

CSE462/562 (Fall 2024): Lecture 10 3

SELECT 𝐺, 𝑆𝑈𝑀 𝐸
FROM 𝑅
WHERE 𝑃
GROUP BY 𝐺
HAVING 𝑃′

ORDER BY S

SELECT 𝐸
FROM 𝑅
WHERE 𝑃

ORDER BY S

𝑆𝑜𝑟𝑡𝑆 𝜋𝐸𝜎𝑃𝑅

𝑆𝑜𝑟𝑡𝑆 𝜎𝑃′ 𝐺𝛾𝑆𝑈𝑀 𝐸 𝜎𝑃𝑅

Logical plan -> physical plan
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?
• How to implement each operator?
• How to measure the cost of each operator?

• A few basic operators
• Selection: 𝜎
• Projection: 𝜋 (w/ and w/o deduplication)
• Aggregation: 𝛾 w/o or w/ group by
• Set operators: ∪, −,∩
• Sorting (later lectures)
• Cartesian product: × or Join: ⋈ (later lectures)

• Question: what are the alternatives? How to evaluate their efficiency?

CSE462/562 (Fall 2024): Lecture 10 4

Measuring cost
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?
• How to implement each operator?
• How to measure the cost of each operator?

• For disk-based systems, we mainly measure the number of I/Os
• Differences between random I/O and sequential I/O
• Faster storage -> also need to measure the CPU cost

• A simple cost model
• 𝑡𝑇: average time to transfer a page of data (data transfer time)
• 𝑡𝑆: average time to randomly seek data (seek time + rotation delay)

• For SSD, time overhead for initiating an I/O request

• Cost = NT × 𝑡𝑇 + 𝑆 × 𝑡𝑆

• 𝑁𝑇: number of pages read/written; 𝑆: number of random I/O

CSE462/562 (Fall 2024): Lecture 10 5

HDD* SSD†

𝑡𝑇 (ms) 0.1 0.01

𝑡𝑆 (ms) 4 0.09

Typical 𝑡𝑇 and 𝑇𝑆

Data from DB Concept book (Ch. 15.2).
Assuming 4KB pages.
* typical HDD with 40 MB/s transfer rate,
15000 rpm disk in 2018
† typical SATA SSD that supports 10K IOPS (QD-
1), 400 MB/s sequential read rate

Measuring cost
• Other assumptions

• Ignoring the buffer effect for random pages
• Do consider the private workspace size 𝑀 for the operators

• Omitting the cost of transferring output to the user/disk
• Common to any equivalent plan

• Notations: for relation 𝑅
• 𝑇𝑅: number of records, 𝑁𝑅: number of pages in its heap file, 𝐵𝑅: (average) number of tuples per page
• ℎ𝐼: height of a B-tree index 𝐼 over the file
• 𝑀: private workspace size in pages

• Running example
• 𝑡𝑆 = 4 𝑚𝑠, 𝑡𝑇 = 0.1 𝑚𝑠, 4000-byte page
• Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

• 50 bytes/tuple, 𝐵𝑅 = 80, 𝑇𝑅 = 40,000, 𝑁𝑅 = 500
• Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

• 20 bytes/tuple, 𝐵𝐸 = 200, 𝑇𝐸 = 200,000, 𝑁𝐸 = 1000

CSE462/562 (Fall 2024): Lecture 10 6

Selection 𝝈
• Scan is usually the leaf-level of logical plans

• Represents reading an entire relation -- not really a relational operator

• Selection 𝜎𝑃𝑄
• 𝑃 is usually conjunctions or disjunctions 𝑄. 𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒

but can also be User-Defined Functions (UDF)

• selects records satisfying some predicate from the child

• Child may be a scan or some other operators

• Many possible implementation of selection depending on

• the predicate 𝑃

• the available file/index for the scan

CSE462/562 (Fall 2024): Lecture 10 7

Scan R

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

Logical plan for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅

op is an operator: <, <=, =, <>, >, >=, …

Simple selection: linear scan
• Consider a simple selection 𝜎𝑅.𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒𝑅

• Assume that the child is a relation stored in some disk file/index

• Most straight-forward implementation is linear scan
• Scan each page and each record on the page

• emits a record only if the predicate 𝑅. 𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 evaluates to true

• Applies to any predicate 𝑃 or file

• Also works for pipelining -- can do selection on the fly without writing temporary files

• Cost: 𝑡𝑆 + 𝑁𝑅 × 𝑡𝑇

• 1 seek to the start of the file and 𝑁𝑅 pages to read

• the “last resort” -- usually the slowest implementation

• cost for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021 𝑅: 𝑡𝑆 + 500 × 𝑡𝑇 = 54 𝑚𝑠

CSE462/562 (Fall 2024): Lecture 10 8

Scan R

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

Logical plan for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅

Simple selection: index scan
• If the file has an index 𝐼 over the search key 𝑘 ∈ [𝐾𝑙𝑜, 𝐾ℎ𝑖]

• Assuming selectivity is 𝑠 = 0.1, the number of matching records is 𝑇 and the number of
pages with matching records is 𝑁,
cost =
• Cost for finding qualifying data entries 𝐼 𝑁 = 𝐼𝑆 𝑁 𝑡𝑆 + 𝐼𝑇 𝑁 𝑡𝑇

• 𝐼𝑆 𝑁 ∶ how many random accesses in the index before reaching the first data entry

• 𝐼𝑇 𝑁 𝑡𝑇: how many pages in total were accessed, including those containing the data entries

• + Cost for retrieving the heap records 𝐻 𝑁 = 𝐻𝑆 𝑁, 𝑇 𝑡𝑆 + 𝐻𝑇 𝑁, 𝑇 𝑡𝑇

• 𝐻𝑆 𝑁, 𝑇 : how many random accesses in the heap file

• 𝐻𝑇 𝑁, 𝑇 : how many pages in total were accessed in the heap file

• Cost varies depending on the layout, selectivity of predicates and many other factors!

CSE462/562 (Fall 2024): Lecture 10 9

𝑇: # of matching records
𝐹: # of data entries per leaf page
N: # of pages with matching records

Clustered vs unclustered index
• Assuming data entries contain key and record id in the index (i.e., alternative 2).

CSE462/562 (Fall 2024): Lecture 10

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

10

Access cost of clustered vs unclustered index
• Assuming data entries contain key and record id in the index (i.e., alternative 2).

• Cost of range scan with 𝑛 matching data records in a B-Tree

• assuming we ignore the buffer pool’s effect

• clustered: 𝐻 +
𝑛

𝑀
 I/Os

• unclustered: 𝐻 +
𝑛

𝐵
− 1 + 𝑛 I/Os

CSE462/562 (Fall 2024): Lecture 10

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

H = number
of levels

B data entries
per leaf page
on average

M data records per
heap page on average

11

General selection predicates
• Atom predicate: 𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 or UDF

• General predicates:
• Conjunction ∧ (and), disjunction ∨ (or), negation ¬ (not) of atoms or general predicates

• e.g., 𝜎 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟>=2019 ∨ 𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′ ∧ 𝑠𝑖𝑑 >= 1000𝑅

• Most general cases can always be handled by linear scans
• Slow!

• Optimization for special cases:
• Conjunction of simple selection predicates 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• where 𝜃𝑖 is an atom

• Disjunction of selection predicates 𝜃1 ∨ 𝜃2 ∨ ⋯ ∨ 𝜃𝑟

• Transforming a predicate 𝑃 into Conjunctive Normal Form (CNF) or Disjunction Normal Form (DNF) for
additional optimization opportunities

• e.g., 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 >= 2019 ∨ 𝑚𝑎𝑗𝑜𝑟 =′ 𝐶𝑆′ ∧ 𝑠𝑖𝑑 >= 1000 (CNF)
⇔ 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 >= 2019 ∧ 𝑠𝑖𝑑 ≥ 1000 ∨ 𝑚𝑎𝑗𝑜𝑟 =′ 𝐶𝑆′ ∧ 𝑠𝑖𝑑 ≥ 1000 (DNF)

CSE462/562 (Fall 2024): Lecture 10 12

Conjunctive selection with one index
• 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• Choosing one or a prefix of predicates that can be answered using one index

• Apply the rest of the predicates over the result on the fly

• For instance, a B-Tree over 𝑓1, 𝑓2 can select for predicates over a prefix of its index keys

• 𝑓1 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 (where 𝑜𝑝 ∈ <, ≤, =, >, ≥)

• 𝑓1 = 𝑣𝑎𝑙𝑢𝑒 ∧ 𝑓2 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 (where 𝑜𝑝 ∈ <, ≤, =, >, ≥)

• If allow using skip scan (jump scan), 𝑓2 op value or 𝑓1 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 ∧ 𝑓2 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒

• What if there’re multiple choices?

• Considerations: selectivity, type of indexes, actual cost (access path selection in QO)

• Cost is the same as index scans/bitmap index scans

CSE462/562 (Fall 2024): Lecture 10 13

Conjunctive selection with multiple indexes
• 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• What if the atoms or several conjunctions of atoms can be answered by different indexes?

• Example: 𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′ ∧ 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅 when we have two indexes 𝐼1 𝑚𝑎𝑗𝑜𝑟 and 𝐼2 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟

• Algorithm:
1. Collect all the RIDs using both indexes

2. Compute the intersection of the RIDs

3. Fetch the heap records of the RIDs in the result set

• Cost: index search + collecting data entries+ sort + intersection + fetching heap records

CSE462/562 (Fall 2024): Lecture 10 14

Partial matches for conjunctive selection
• 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• What if only part of the predicates can be optimized with indexes

• Apply the remaining predicates over the result and discard those that do not satisfy

• e.g.,𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′ ∧ 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021 with a hash index 𝐼 𝑚𝑎𝑗𝑜𝑟

• Index Scan for all CS majors using 𝐼 𝑚𝑎𝑗𝑜𝑟

• Apply the predicate 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 = 2021 over the heap records on the fly

• Note the remaining predicates do not need to be in conjunctive normal form!

• Can be arbitrary predicates (e.g., UDF)

CSE462/562 (Fall 2024): Lecture 10 15

Disjunction selection with multiple indexes
• 𝜃1 ∨ 𝜃2 ∨ ⋯ ∨ 𝜃𝑟

• Only optimizable if all clauses 𝜃𝑖 can be optimized using some index

• Otherwise, fall back to linear scan

• Algorithm:
1. Collect all the RIDs using both indexes

2. Compute the union of the RIDs

3. Fetch the heap records of the RIDs in the result set

• Cost: index search + collecting data entries+ sort + union + fetching heap records

CSE462/562 (Fall 2024): Lecture 10 16

An excursion: expression evaluation
• So far, we assume expression evaluation is a black box

• Does the predicate evaluate to true in selection?

• Projection list evaluation?

• …

• How does it work?
• How costly are they?

CSE462/562 (Fall 2024): Lecture 10 17

Expression tree
• A tree that represents an expression

• Leaf nodes: literals, variables
• Internal nodes: operators (+, -, *, /, …), function calls, …

• Expressions in QP are attached to a plan node
• Variables refers to columns in the output of some plan node

• usually output from child, but could be intermediate outputs within certain operators

• Example: predicate 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 >= 2019 ∨ 𝑚𝑎𝑗𝑜𝑟 = ′𝐶𝑆′

CSE462/562 (Fall 2024): Lecture 10 18

>=

𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 2019

∨

=

𝑚𝑎𝑗𝑜𝑟 ′𝐶𝑆′

Q: what are the variables in query plan?
A: (short answer) columns in the output

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

some input

100, Alice, CS, 2020

Expression evaluation
• Interpretation vs Compilation

• type checking?

• In the course project Taco-DB, we use interpretation (for ease of implementation)
• recursive evaluation through Eval() calls

CSE462/562 (Fall 2024): Lecture 10 19

>=

𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 2019

∨

=

𝑚𝑎𝑗𝑜𝑟 ′𝐶𝑆′

100, Alice, CS, 2020

Eval(rec)

rec =

=

= return result

2020 2019

(2020 >= 2019) == true

true ∨ any boolean value == true

true

Projection 𝝅
• Without deduplication

• evaluate projection list for the records on the fly
• cost: no additional I/O
• sometimes baked into other operators (i.e., all operators can be followed by an implicit projection)

• With deduplication
• Requires materialization (blocking)
• Hash or Sort

• Hash -> build a hash table where duplicates are dropped
• Sort -> emit a record only if it is the first record or it is different from the previous one

• Result set fits in memory => easy to implement (does not add I/O cost)
• When result sets exceed configured workspace size 𝑀,

• Need to use external hashing and sorting algorithms (next lecture)
• Optimization opportunities
• Will come back to this later after we discuss external hashing and sorting

CSE462/562 (Fall 2024): Lecture 10 20

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Single-table queries
	Slide 3: SQL -> logical plan
	Slide 4: Logical plan -> physical plan
	Slide 5: Measuring cost
	Slide 6: Measuring cost
	Slide 7: Selection bold italic sigma
	Slide 8: Simple selection: linear scan
	Slide 9: Simple selection: index scan
	Slide 10: Clustered vs unclustered index
	Slide 11: Access cost of clustered vs unclustered index
	Slide 12: General selection predicates
	Slide 13: Conjunctive selection with one index
	Slide 14: Conjunctive selection with multiple indexes
	Slide 15: Partial matches for conjunctive selection
	Slide 16: Disjunction selection with multiple indexes
	Slide 17: An excursion: expression evaluation
	Slide 18: Expression tree
	Slide 19: Expression evaluation
	Slide 20: Projection bold italic pi

