CSE462/562: Database Systems (Fall 24)
Lecture 10: Single-table query processing:

Selection, Projection & Expression Evaluation
9/26/2024

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

G

Last updated: 10/9/2024 3:00 PM

Single-table queries

« We'll start with the simplest single-table queries w/o or w/ aggregations

 How to translate it into a query plan?
* How to implement each operator?
 How to measure the cost of each operator?

SELECT E
FROM R
WHERE P
ORDER BY S

SELECT G,SUM(E)

FROM R
WHERE P
GROUP BY G
HAVING P’
ORDER BY S

CSE462/562 (Fall 2024): Lecture 10

SQL -> logical plan

« We'll start with the simplest single-table queries w/o or w/ aggregations
 How to translate it into a query plan?

SELECT E

FROM R So'rts(ﬂEO'pR)
WHERE P

ORDER BY S

SELECT G,SUM(E)
FROM R

WHERE P
GROUP BY G SO”S(UP’ GVSUM(E)UPR)

HAVING P’
ORDER RY S

CSE462/562 (Fall 2024): Lecture 10

Logical plan -> physical plan

« We'll start with the simplest single-table queries w/o or w/ aggregations

* How to implement each operator?

e A few basic operators
e Selection: o
* Projection: ™ (w/ and w/o deduplication)
* Aggregation: y w/o or w/ group by
* Set operators: U, —,N
e Sorting (later lectures)
e Cartesian product: X or Join: X (later lectures)

e Question: what are the alternatives? How to evaluate their efficiency?

CSE462/562 (Fall 2024): Lecture 10

Measuring cost

« We'll start with the simplest single-table queries w/o or w/ aggregations

 How to measure the cost of each operator?

* For disk-based systems, we mainly measure the number of |/Os
 Differences between random I/O and sequential I/0

* Faster storage -> also need to measure the CPU cost Typical t; and T
. | oo | s
* Asimple cost model
* ty:average time to transfer a page of data (data transfer time) tr (ms) Lel LatE

* ts: average time to randomly seek data (seek time + rotation delay)

: . ts (ms) 4 0.09
* For SSD, time overhead for initiating an 1/O request

¢ COSt=NTXtT+SXtS
e Ny :number of pages read/written; S: number of random 1/0

CSE462/562 (Fall 2024): Lecture 10

Measuring cost

e Other assumptions
* lIgnoring the buffer effect for random pages
* Do consider the private workspace size M for the operators
* Omitting the cost of transferring output to the user/disk
« Common to any equivalent plan

* Notations: for relation R
e Tr: number of records, Np: number of pages in its heap file, Bg: (average) number of tuples per page
* h;: height of a B-tree index I over the file
e M: private workspace size in pages

* Running example
* ts = 4 ms, tr = 0.1 ms, 4000-byte page
« Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)
* 50 bytes/tuple, B = 80, T, = 40,000, N, = 500
* Enroliment: E(sid: int, semester: char(3), cno: int, grade: double)
* 20 bytes/tuple, By = 200, Tz = 200,000, N; = 1000

CSE462/562 (Fall 2024): Lecture 10

Selection o

* Scan is usually the leaf-level of logical plans
* Represents reading an entire relation -- not really a relational operator

e Selection O'pQ op is an operator: <, <=, =, <>, >, >=, ...
* P is usually conjunctions or disjunctions Q. attr op value
but can also be User-Defined Functions (UDF)
. L. . . Oadm year=2021
 selects records satisfying some predicate from the child Q
* Child may be a scan or some other operators
« Many possible implementation of selection depending on Logical plan for 0aam year=2021R

* the predicate P
* the available file/index for the scan

CSE462/562 (Fall 2024): Lecture 10

Simple selection: linear scan

* Consider a simple selection o 4¢tr op valueR @

* Assume that the child is a relation stored in some disk file/index @
can

* Most straight-forward implementation is linear scan
* Scan each page and each record on the page
* emits a record only if the predicate R. attr op value evaluates to true

Logical plan for 0adm_year=2021R

* Applies to any predicate P or file
* Also works for pipelining -- can do selection on the fly without writing temporary files

* Cost:tg + Np X tp
* 1 seek to the start of the file and Ny pages to read
* the “last resort” -- usually the slowest implementation

* costfor 04am year=2021 R: ts + 500 X tr = 54 ms

CSE462/562 (Fall 2024): Lecture 10

T: # of matching records

Simple SElECtion: index Scan F: # of data entries per leaf page

N: # of pages with matching records

* If the file has an index I over the search key k € [K),, Ky;]

* Assuming selectivity is s = 0.1, the number of matching records is T and the number of
pages with matching records is N,
cost =

* Cost for finding qualifying data entries I(N) = I¢(N)ts + I (N)ty
* I<(N) : how many random accesses in the index before reaching the first data entry
* I:(N)t;: how many pages in total were accessed, including those containing the data entries

* + Cost for retrieving the heap records H(N) = H¢(N,T)ts + Hy (N, T)ty
* Hs(N,T): how many random accesses in the heap file

* H;(N,T): how many pages in total were accessed in the heap file

* Cost varies depending on the layout, selectivity of predicates and many other factors!

CSE462/562 (Fall 2024): Lecture 10 9

Clustered vs unclustered index

* Assuming data entries contain key and record id in the index (i.e., alternative 2).

Index entries

UNCLUSTERED

CLUSTERED direct search for
data entries
Data entries || Data entries <= <7
/A L\ N (Index File) MNAEN—~_ X

/]

I\

Data Records

(Data file) / ’0(\ / W&

Data Records

CSE462/562 (Fall 2024): Lecture 10

10

Access cost of clustered vs unclustered index

* Assuming data entries contain key and record id in the index (i.e., alternative 2).

* Cost of range scan with n matching data records in a B-Tree
e assuming we ignore the buffer pool’s effect

e clustered: H + [ﬂ |/Os

e unclustered:

Index entries

UNCLUSTERED

CLUSTERED direct search for
H = number data entries
of levels : ‘ / \
v B dalta](centrles Data entries | Data entries < il <>
perieat page m NN (Index File)

on average//l

I\

M data records per

heap page on average

Data Records

AN
(Data file) //\

Data Records

CSE462/562 (Fall 2024): Lecture 10

X
N AN

11

General selection predicates

* Atom predicate: attr op value or UDF

* General predicates:
e Conjunction A (and), disjunction V (or), negation = (not) of atoms or general predicates

* €.8. 0(adm year>=2019v major='cs’) Asid >= 1000R

* Most general cases can always be handled by linear scans
* Slow!

* Optimization for special cases:
* Conjunction of simple selection predicates 8; A6, A--- A 0.
* where 6; is an atom
* Disjunction of selection predicates 8; V8, V :--V 0,
* Transforming a predicate P into Conjunctive Normal Form (CNF) or Disjunction Normal Form (DNF) for
additional optimization opportunities
* e.g., (adm_year >= 2019 V major =’ CS’) A sid >= 1000 (CNF)
= (adm_year >= 2019 A sid = 1000) V (major =" CS’ Asid = 1000) (DNF)

CSE462/562 (Fall 2024): Lecture 10

12

Conjunctive selection with one index

c O, AO, A NB,
* Choosing one or a prefix of predicates that can be answered using one index
* Apply the rest of the predicates over the result on the fly
* For instance, a B-Tree over (f3, f>) can select for predicates over a prefix of its index keys
* f; op value (where op € {<, <, =,>,2))
* f; = value A f, op value (where op € {<, <, =,>,>})
* If allow using skip scan (jump scan), f, op value or f; op value A f, op value
 What if there’re multiple choices?
» Considerations: selectivity, type of indexes, actual cost (access path selection in QO)

e Cost is the same as index scans/bitmap index scans

CSE462/562 (Fall 2024): Lecture 10

13

Conjunctive selection with multiple indexes

¢ 81/\02/\/\8r
 What if the atoms or several conjunctions of atoms can be answered by different indexes?
* Example: 0 qior="cs’ A adm year=2021R when we have two indexes I; (major) and I, (adm_year)

e Algorithm:
1. Collect all the RIDs using both indexes
2. Compute the intersection of the RIDs
3. Fetch the heap records of the RIDs in the result set

* Cost: index search + collecting data entries+ sort + intersection + fetching heap records

CSE462/562 (Fall 2024): Lecture 10 14

Partial matches for conjunctive selection

c O, AO, A NB,
* What if only part of the predicates can be optimized with indexes
* Apply the remaining predicates over the result and discard those that do not satisfy
* €.8.0major="cs' nadm year=2021 With a hash index I(major)
* Index Scan for all CS majors using I(major)
* Apply the predicate adm year = 2021 over the heap records on the fly

* Note the remaining predicates do not need to be in conjunctive normal form!
e Can be arbitrary predicates (e.g., UDF)

CSE462/562 (Fall 2024): Lecture 10

15

Disjunction selection with multiple indexes

¢ 91V92 VVBT
* Only optimizable if all clauses 6; can be optimized using some index
* Otherwise, fall back to linear scan

e Algorithm:
1. Collect all the RIDs using both indexes

2. Compute the union of the RIDs
3. Fetch the heap records of the RIDs in the result set

* Cost: index search + collecting data entries+ sort + union + fetching heap records

CSE462/562 (Fall 2024): Lecture 10

16

An excursion: expression evaluation

* So far, we assume expression evaluation is a black box

* Does the predicate evaluate to true in selection?
* Projection list evaluation?

* How does it work?
* How costly are they?

CSE462/562 (Fall 2024): Lecture 10

17

Expression tree

* A tree that represents an expression
* Leaf nodes: literals, variables
* Internal nodes: operators (+, -, *, /, ...), function calls, ...

* Expressions in QP are attached to a plan node
* Variables refers to columns in the output of some plan node

Q: what are the variables in query plan?
A: (short answer) columns in the output

* usually output from child, but could be intermediate outputs within certain operators

* Example: predicate adm year >= 2019 VvV major ='CS’

Oadm year=2021
A

100, Alice, CAS, 2020

Expression evaluation

* Interpretation vs Compilation
* type checking?

 In the course project Taco-DB, we use interpretation (for ease of implementation)
* recursive evaluation through Eval () calls

true

rec = | 100, Alice, CS, 2020

// = FEval (rec)
\\\ = return result

CSE462/562 (Fall 2024): Lecture 10 19

Projection it

* Without deduplication
* evaluate projection list for the records on the fly
e cost: no additional I/O
* sometimes baked into other operators (i.e., all operators can be followed by an implicit projection)

* With deduplication
* Requires materialization (blocking)
* Hash or Sort
* Hash -> build a hash table where duplicates are dropped
e Sort -> emit a record only if it is the first record or it is different from the previous one
* Result set fits in memory => easy to implement (does not add |/O cost)
 When result sets exceed configured workspace size M,
* Need to use external hashing and sorting algorithms (next lecture)
* Optimization opportunities
* Will come back to this later after we discuss external hashing and sorting

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Single-table queries
	Slide 3: SQL -> logical plan
	Slide 4: Logical plan -> physical plan
	Slide 5: Measuring cost
	Slide 6: Measuring cost
	Slide 7: Selection bold italic sigma
	Slide 8: Simple selection: linear scan
	Slide 9: Simple selection: index scan
	Slide 10: Clustered vs unclustered index
	Slide 11: Access cost of clustered vs unclustered index
	Slide 12: General selection predicates
	Slide 13: Conjunctive selection with one index
	Slide 14: Conjunctive selection with multiple indexes
	Slide 15: Partial matches for conjunctive selection
	Slide 16: Disjunction selection with multiple indexes
	Slide 17: An excursion: expression evaluation
	Slide 18: Expression tree
	Slide 19: Expression evaluation
	Slide 20: Projection bold italic pi

