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Single-table queries
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?

• How to implement each operator?

• How to measure the cost of each operator?
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SELECT 𝐺, 𝑆𝑈𝑀 𝐸
FROM 𝑅
WHERE 𝑃
GROUP BY 𝐺
HAVING 𝑃′

ORDER BY S

SELECT 𝐸
FROM 𝑅
WHERE 𝑃

ORDER BY S



SQL -> logical plan
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?

• How to implement each operator?

• How to measure the cost of each operator?
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SELECT 𝐺, 𝑆𝑈𝑀 𝐸
FROM 𝑅
WHERE 𝑃
GROUP BY 𝐺
HAVING 𝑃′

ORDER BY S

SELECT 𝐸
FROM 𝑅
WHERE 𝑃

ORDER BY S

𝑆𝑜𝑟𝑡𝑆 𝜋𝐸𝜎𝑃𝑅

𝑆𝑜𝑟𝑡𝑆 𝜎𝑃′  𝐺𝛾𝑆𝑈𝑀 𝐸 𝜎𝑃𝑅



Logical plan -> physical plan
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?
• How to implement each operator?
• How to measure the cost of each operator?

• A few basic operators
• Selection: 𝜎
• Projection: 𝜋 (w/ and w/o deduplication)
• Aggregation: 𝛾 w/o or w/ group by
• Set operators: ∪, −,∩
• Sorting (later lectures)
• Cartesian product: × or Join: ⋈ (later lectures)

• Question: what are the alternatives? How to evaluate their efficiency?
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Measuring cost
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?
• How to implement each operator?
• How to measure the cost of each operator?

• For disk-based systems, we mainly measure the number of I/Os
• Differences between random I/O and sequential I/O
• Faster storage -> also need to measure the CPU cost

• A simple cost model 
• 𝑡𝑇: average time to transfer a page of data (data transfer time)
• 𝑡𝑆: average time to randomly seek data (seek time + rotation delay)

• For SSD, time overhead for initiating an I/O request

• Cost = NT × 𝑡𝑇 + 𝑆 × 𝑡𝑆

• 𝑁𝑇: number of pages read/written; 𝑆: number of random I/O
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HDD* SSD†

𝑡𝑇  (ms) 0.1 0.01

𝑡𝑆 (ms) 4 0.09

Typical 𝑡𝑇  and 𝑇𝑆

Data from DB Concept book (Ch. 15.2).
Assuming 4KB pages.
* typical HDD with 40 MB/s transfer rate, 
15000 rpm disk in 2018 
† typical SATA SSD that supports 10K IOPS (QD-
1),  400 MB/s sequential read rate



Measuring cost
• Other assumptions

• Ignoring the buffer effect for random pages
• Do consider the private workspace size 𝑀 for the operators

• Omitting the cost of transferring output to the user/disk
• Common to any equivalent plan

• Notations: for relation 𝑅
• 𝑇𝑅: number of records, 𝑁𝑅: number of pages in its heap file, 𝐵𝑅: (average) number of tuples per page
• ℎ𝐼: height of a B-tree index 𝐼 over the file
• 𝑀: private workspace size in pages

• Running example
• 𝑡𝑆 = 4 𝑚𝑠, 𝑡𝑇 = 0.1 𝑚𝑠, 4000-byte page
• Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

• 50 bytes/tuple, 𝐵𝑅 = 80, 𝑇𝑅 = 40,000, 𝑁𝑅 = 500
• Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

• 20 bytes/tuple, 𝐵𝐸 = 200, 𝑇𝐸 = 200,000, 𝑁𝐸 = 1000
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Selection 𝝈
• Scan is usually the leaf-level of logical plans

• Represents reading an entire relation -- not really a relational operator

• Selection 𝜎𝑃𝑄
• 𝑃 is usually conjunctions or disjunctions 𝑄. 𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒

but can also be User-Defined Functions (UDF)

• selects records satisfying some predicate from the child

• Child may be a scan or some other operators

• Many possible implementation of selection depending on

• the predicate 𝑃

• the available file/index for the scan
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Scan R

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

Logical plan for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅

op is an operator: <, <=, =, <>, >, >=, …



Simple selection: linear scan
• Consider a simple selection 𝜎𝑅.𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒𝑅

• Assume that the child is a relation stored in some disk file/index

• Most straight-forward implementation is linear scan
• Scan each page and each record on the page

• emits a record only if the predicate 𝑅. 𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 evaluates to true

• Applies to any predicate 𝑃 or file

• Also works for pipelining -- can do selection on the fly without writing temporary files

• Cost: 𝑡𝑆 + 𝑁𝑅 × 𝑡𝑇

• 1 seek to the start of the file and 𝑁𝑅 pages to read

• the “last resort” -- usually the slowest implementation

• cost for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021 𝑅: 𝑡𝑆 + 500 × 𝑡𝑇 = 54 𝑚𝑠
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Scan R

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

Logical plan for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅



Simple selection: index scan
• If the file has an index 𝐼 over the search key 𝑘 ∈ [𝐾𝑙𝑜, 𝐾ℎ𝑖]

• Assuming selectivity is 𝑠 = 0.1, the number of matching records is 𝑇 and the number of 
pages with matching records is 𝑁,
cost = 
• Cost for finding qualifying data entries 𝐼 𝑁 = 𝐼𝑆 𝑁 𝑡𝑆 + 𝐼𝑇 𝑁 𝑡𝑇 

• 𝐼𝑆 𝑁 ∶ how many random accesses in the index before reaching the first data entry

• 𝐼𝑇 𝑁 𝑡𝑇: how many pages in total were accessed, including those containing the data entries

• + Cost for retrieving the heap records 𝐻 𝑁 = 𝐻𝑆 𝑁, 𝑇 𝑡𝑆 + 𝐻𝑇 𝑁, 𝑇 𝑡𝑇

• 𝐻𝑆 𝑁, 𝑇 : how many random accesses in the heap file

• 𝐻𝑇 𝑁, 𝑇 : how many pages in total were accessed in the heap file

• Cost varies depending on the layout, selectivity of predicates and many other factors!
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𝑇: # of matching records
𝐹: # of data entries per leaf page
N: # of pages with matching records



Clustered vs unclustered index
• Assuming data entries contain key and record id in the index (i.e., alternative 2).
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Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

10



Access cost of clustered vs unclustered index
• Assuming data entries contain key and record id in the index (i.e., alternative 2).

• Cost of range scan with 𝑛 matching data records in a B-Tree

• assuming we ignore the buffer pool’s effect

• clustered: 𝐻 +
𝑛

𝑀
  I/Os

• unclustered: 𝐻 +
𝑛

𝐵
− 1 + 𝑛 I/Os
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Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

H = number 
of levels

B data entries
per leaf page
on average

M data records per 
heap page on average

11



General selection predicates
• Atom predicate: 𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 or UDF

• General predicates:
• Conjunction ∧ (and), disjunction ∨ (or), negation ¬ (not) of atoms or general predicates

• e.g., 𝜎 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟>=2019 ∨ 𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′  ∧ 𝑠𝑖𝑑 >= 1000𝑅

• Most general cases can always be handled by linear scans
• Slow!

• Optimization for special cases:
• Conjunction of simple selection predicates 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• where 𝜃𝑖 is an atom

• Disjunction of selection predicates 𝜃1 ∨ 𝜃2 ∨ ⋯ ∨ 𝜃𝑟

• Transforming a predicate 𝑃 into Conjunctive Normal Form (CNF) or Disjunction Normal Form (DNF) for 
additional optimization opportunities

• e.g., 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 >= 2019 ∨  𝑚𝑎𝑗𝑜𝑟 =′ 𝐶𝑆′  ∧  𝑠𝑖𝑑 >=  1000  (CNF) 
⇔ 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 >= 2019 ∧ 𝑠𝑖𝑑 ≥ 1000 ∨ 𝑚𝑎𝑗𝑜𝑟 =′ 𝐶𝑆′ ∧ 𝑠𝑖𝑑 ≥ 1000    (DNF)
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Conjunctive selection with one index
• 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• Choosing one or a prefix of predicates that can be answered using one index

• Apply the rest of the predicates over the result on the fly

• For instance, a B-Tree over 𝑓1, 𝑓2  can select for predicates over a prefix of its index keys

• 𝑓1 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 (where 𝑜𝑝 ∈ <, ≤, =, >, ≥ )

• 𝑓1 = 𝑣𝑎𝑙𝑢𝑒 ∧ 𝑓2 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 (where 𝑜𝑝 ∈ <, ≤, =, >, ≥ )

• If allow using skip scan (jump scan), 𝑓2 op value  or 𝑓1 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 ∧ 𝑓2 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒

• What if there’re multiple choices?

• Considerations: selectivity, type of indexes, actual cost (access path selection in QO)

• Cost is the same as index scans/bitmap index scans
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Conjunctive selection with multiple indexes
• 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• What if the atoms or several conjunctions of atoms can be answered by different indexes?

• Example: 𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′ ∧ 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅 when we have two indexes 𝐼1 𝑚𝑎𝑗𝑜𝑟  and 𝐼2 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟

• Algorithm:
1. Collect all the RIDs using both indexes

2. Compute the intersection of the RIDs

3. Fetch the heap records of the RIDs in the result set

• Cost: index search + collecting data entries+ sort + intersection + fetching heap records
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Partial matches for conjunctive selection
• 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• What if only part of the predicates can be optimized with indexes

• Apply the remaining predicates over the result and discard those that do not satisfy

• e.g.,𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′ ∧ 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021 with a hash index 𝐼 𝑚𝑎𝑗𝑜𝑟

• Index Scan for all CS majors using 𝐼 𝑚𝑎𝑗𝑜𝑟

• Apply the predicate 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 = 2021 over the heap records on the fly

• Note the remaining predicates do not need to be in conjunctive normal form!

• Can be arbitrary predicates (e.g., UDF)
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Disjunction selection with multiple indexes
• 𝜃1 ∨ 𝜃2 ∨ ⋯ ∨ 𝜃𝑟

• Only optimizable if all clauses 𝜃𝑖 can be optimized using some index

• Otherwise, fall back to linear scan

• Algorithm:
1. Collect all the RIDs using both indexes

2. Compute the union of the RIDs

3. Fetch the heap records of the RIDs in the result set

• Cost: index search + collecting data entries+ sort + union + fetching heap records
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An excursion: expression evaluation
• So far, we assume expression evaluation is a black box

• Does the predicate evaluate to true in selection?

• Projection list evaluation?

• …

• How does it work?
• How costly are they?
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Expression tree
• A tree that represents an expression

• Leaf nodes: literals, variables
• Internal nodes: operators (+, -, *, /, …), function calls, …

• Expressions in QP are attached to a plan node
• Variables refers to columns in the output of some plan node

• usually output from child, but could be intermediate outputs within certain operators

• Example: predicate 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 >= 2019 ∨  𝑚𝑎𝑗𝑜𝑟 = ′𝐶𝑆′
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>=

𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 2019

∨

=

𝑚𝑎𝑗𝑜𝑟 ′𝐶𝑆′

Q: what are the variables in query plan?
A: (short answer) columns in the output

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

some input

100, Alice, CS, 2020



Expression evaluation
• Interpretation vs Compilation

• type checking?

• In the course project Taco-DB, we use interpretation (for ease of implementation)
• recursive evaluation through Eval() calls

CSE462/562 (Fall 2024): Lecture 10 19

>=

𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 2019

∨

=

𝑚𝑎𝑗𝑜𝑟 ′𝐶𝑆′

100, Alice, CS, 2020

Eval(rec)

rec =

=

= return result

2020 2019

(2020 >= 2019) == true

true ∨ any boolean value == true 

true



Projection 𝝅
• Without deduplication

• evaluate projection list for the records on the fly
• cost: no additional I/O
• sometimes baked into other operators (i.e., all operators can be followed by an implicit projection)

• With deduplication
• Requires materialization (blocking)
• Hash or Sort

• Hash -> build a hash table where duplicates are dropped
• Sort -> emit a record only if it is the first record or it is different from the previous one

• Result set fits in memory => easy to implement (does not add I/O cost)
• When result sets exceed configured workspace size 𝑀,

• Need to use external hashing and sorting algorithms (next lecture)
• Optimization opportunities
• Will come back to this later after we discuss external hashing and sorting
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