
CSE462/562: Database Systems (Fall 24)

Lecture 11: Single-table query processing:
Aggregation

10/1/2024

Last updated: 9/10/2024 1:30 PM

Recap on Single-Table QP

CSE462/562 (Fall 2024): Lecture 11 2

SELECT 𝐺, 𝑆𝑈𝑀 𝐸
FROM 𝑅
WHERE 𝑃
GROUP BY 𝐺
HAVING 𝑃′

ORDER BY S

𝑆𝑜𝑟𝑡𝑆 𝜎𝑃′ 𝐺𝛾𝑆𝑈𝑀 𝐸 𝜎𝑃𝑅

SELECT 𝐸
FROM 𝑅
WHERE 𝑃

ORDER BY S

𝑆𝑜𝑟𝑡𝑆 𝜋𝐸𝜎𝑃𝑅

A few basic operators
Selection: 𝜎
Projection: 𝜋 (w/ and w/o deduplication)
Aggregation: 𝛾 w/o or w/ group by
Set operators: ∪, −,∩
Sorting
Cartesian product: × or Join: ⋈

Measuring cost
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?
• How to implement each operator?
• How to measure the cost of each operator?

• For disk-based systems, we mainly measure the number of I/Os
• Differences between random I/O and sequential I/O
• Faster storage -> also need to measure the CPU cost

• A simple cost model
• 𝑡𝑇: average time to transfer a page of data (data transfer time)
• 𝑡𝑆: average time to randomly seek data (seek time + rotation delay)

• For SSD, time overhead for initiating an I/O request

• Cost = 𝐵 × 𝑡𝑇 + 𝑆 × 𝑡𝑆

• 𝐵: number of pages read/written; 𝑆: number of random I/O

CSE462/562 (Fall 2024): Lecture 11 3

HDD* SSD†

𝑡𝑇 (ms) 0.1 0.01

𝑡𝑆 (ms) 4 0.09

Typical 𝑡𝑇 and 𝑇𝑆

Data from DB Concept book (Ch. 15.2).
Assuming 4KB pages.
* typical HDD with 40 MB/s transfer rate,
15000 rpm disk in 2018
† typical SATA SSD that supports 10K IOPS (QD-
1), 400 MB/s sequential read rate

Measuring cost
• Other assumptions

• Ignoring the buffer effect for random pages
• Do consider the private workspace size 𝑀 for the operators

• Omitting the cost of transferring output to the user/disk
• Common to any equivalent plan

• Notations: for relation 𝑅
• 𝑇𝑅: number of records, 𝑁𝑅: number of pages in its heap file, 𝐵𝑅: (average) number of tuples per page
• ℎ𝐼: height of a B-tree index 𝐼 over the file
• 𝑀: private workspace size in pages

• Running example
• 𝑡𝑆 = 4 𝑚𝑠, 𝑡𝑇 = 0.1 𝑚𝑠, 4000-byte page
• Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

• 50 bytes/tuple, 𝐵𝑅 = 80, 𝑇𝑅 = 40,000, 𝑁𝑅 = 500
• Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

• 20 bytes/tuple, 𝐵𝐸 = 200, 𝑇𝐸 = 200,000, 𝑁𝐸 = 1000

CSE462/562 (Fall 2024): Lecture 11 4

Aggregation 𝜸 without grouping
• 𝛾𝐹1 𝐸1 ,𝐹2 𝐸2 ,…,𝐹𝑘 𝐸𝑘

𝑄
• Blocking
• Only produce one row of output

• An aggregation can be expressed as three functions: 𝐹 = 𝐹𝑖𝑛𝑖𝑡, 𝐹𝑎𝑐𝑐 , 𝐹𝑓𝑖𝑛𝑎𝑙

• Initialization 𝐹𝑖𝑛𝑖𝑡: 𝑣𝑜𝑖𝑑 → 𝐴 (where 𝐴 is some internal state of the aggregation)
• Accumulation 𝐹𝑎𝑐𝑐: 𝐴, 𝑇 → 𝐴 or 𝐴, 𝑇 → 𝑣𝑜𝑖𝑑
• Finalization 𝐹𝑓𝑖𝑛𝑎𝑙: 𝐴 → 𝑉 (where V is the final type of the aggregation)
• Some systems also have an optional combine function 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒: 𝐴, 𝐴 → 𝐴

• allows parallelizing the aggregation

• Example: AVG of integers
• 𝐴𝑉𝐺𝑖𝑛𝑖𝑡 : create a pair of 𝑠, 𝑐 -- s: sum of values, c: number of values

• 𝐴𝑉𝐺𝑎𝑐𝑐 𝑠, 𝑐 , 𝑥 = 𝑠 + 𝑥, 𝑐 + 1

• 𝐴𝑉𝐺𝑓𝑖𝑛𝑎𝑙 𝑠, 𝑐 = 1.0 ∗ 𝑠 / 𝑐

• Cost: does not add additional I/O cost

CSE462/562 (Fall 2024): Lecture 11 5

𝐹 is an aggregation function, e.g.,
𝑆𝑈𝑀, 𝐶𝑂𝑈𝑁𝑇, 𝑉𝐴𝑅, 𝑆𝑇𝐷𝐷𝐸𝑉, 𝐴𝑉𝐺, 𝑀𝐼𝑁, 𝑀𝐴𝑋 or UDA etc.

Aggregation 𝜸 without grouping
• Example: AVG of integers

• 𝐴𝑉𝐺𝑖𝑛𝑖𝑡 : create a pair of 𝑠, 𝑐 -- s: sum of values, c: number of values

• 𝐴𝑉𝐺𝑎𝑐𝑐 𝑠, 𝑐 , 𝑥 = 𝑠 + 𝑥, 𝑐

• 𝐴𝑉𝐺𝑓𝑖𝑛𝑎𝑙 𝑠, 𝑐 = 1.0 ∗ 𝑠 / 𝑐

• Consider a column in a table with the following values

• 5, 4, 1, 3, 2
• Steps:

• 𝐴𝑉𝐺𝑖𝑛𝑖𝑡 = (0.0, 0)

• 𝐴𝑉𝐺𝑎𝑐𝑐 0.0, 0 , 5 = 5.0, 1

• 𝐴𝑉𝐺𝑎𝑐𝑐 5.0, 1 , 4 = 9.0, 2

• 𝐴𝑉𝐺𝑎𝑐𝑐 9.0, 2 , 1 = 10.0, 3

• 𝐴𝑉𝐺𝑎𝑐𝑐 10.0, 3 , 3 = 13.0,4

• 𝐴𝑉𝐺𝑎𝑐𝑐 13.0, 4 , 2 = 15.0, 5

• 𝐴𝑉𝐺𝑓𝑖𝑛𝑎𝑙 15.0, 5 = 3.0 =
5+4+1+3+2

5

CSE462/562 (Fall 2024): Lecture 11 6

𝐹 is an aggregation function, e.g.,
𝑆𝑈𝑀, 𝐶𝑂𝑈𝑁𝑇, 𝑉𝐴𝑅, 𝑆𝑇𝐷𝐷𝐸𝑉, 𝐴𝑉𝐺, 𝑀𝐼𝑁, 𝑀𝐴𝑋 or UDA etc.

Aggregation in Project 3

code docs: CatCacheBase

the catalog entry

• One of your tasks is to implement aggregation without grouping
• Each aggregation “function” is

• Denoted by aggregation type or aggregation function name in Taco-DB

• Associated with three builtin functions 𝐹𝑖𝑛𝑖𝑡, 𝐹𝑎𝑐𝑐 , 𝐹𝑓𝑖𝑛𝑎𝑙

• Overloaded functions

• Varies depending on operand types

• Result type may also vary depending on input

• To look up the aggregation, use g_catcache->FindAggregationByXXX functions.

• See code docs: CatCacheBase

• Identified by an aggregation ID

• Not to be confused with function IDs of the init, acc, and final functions

• Find the functions from the catalog entry for the aggregation

• Should implement the catalog lookups and the logics in the preceeding two slides.

CSE462/562 (Fall 2024): Lecture 11 7

https://cse.buffalo.edu/~zzhao35/teaching/cse562_fall24/docs/html/classtaco_1_1CatCacheBase.html
https://cse.buffalo.edu/~zzhao35/teaching/cse562_fall24/docs/html/classtaco_1_1SysTable__Aggregation.html

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Recap on Single-Table QP
	Slide 3: Measuring cost
	Slide 4: Measuring cost
	Slide 5: Aggregation bold italic gamma without grouping
	Slide 6: Aggregation bold italic gamma without grouping
	Slide 7: Aggregation in Project 3

