
CSE462/562: Database Systems (Fall 24)

Lecture 12: Single-table query processing:

Sorting and Hashing

10/1/2024 & 10/3/2024

Last updated: 9/10/2024 1:30 PM

Sort operator
• Use cases

• ORDER BY

• Group by

• Distinct (deduplication)

• For Sort-Merge Join

• For bulk loading tree indexes

• For Set operations

• …

• If data fit in memory -- easy
• quick sort

• merge sort

• …

CSE462/562 (Fall 2024): Lecture 12 2

External sorting
• Problem: sort or hashing 1TB of data over 1GB of RAM

• Why not virtual memory?

• Swaps involve expensive random I/Os

• Why not using B-Tree/extendible hashing/linear hashing?

• Dynamic structures carry additional overhead for maintenance (not needed in QP)

• Missing optimization opportunities with hybrid approach (see later)

• General wisdom:
• I/O cost dominates the total cost

• Design algorithms to reduce the number of I/Os

CSE462/562 (Fall 2024): Lecture 12 3

In-memory two-way merge-sort: a starting point
• Recall the two-way merge-sort

• given a list of items in 𝐴[0. . 𝑛 − 1]
• recursively divide and conquer the problem

• divide the list into two halves 𝐴1 0. .
𝑛

2
, 𝐴2

𝑛

2
+ 1, 𝑛 − 1

• merge-sort 𝐴1 and 𝐴2 individually
• merge the two sorted list 𝐴1, 𝐴2

CSE462/562 (Fall 2024): Lecture 12

𝐴

5

9

7

1

2

8

3

4

𝐴𝟏

5

10

7

1

𝑨𝟐

2

8

3

4

𝐴𝟏

1

5

7

10

𝑨𝟐

2

3

4

8

𝑨

1

2

3

4

5

7

8

10

divide
merge-sort
sublists merge

4

External two-way merge sort
• Needs 3 buffers

• Instead of recursion
• works bottom up from the input

CSE462/562 (Fall 2024): Lecture 12

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk fileDisk file

5

External two-way merge sort
• Needs 3 buffers

• Instead of recursion
• works bottom-up from the input

CSE462/562 (Fall 2024): Lecture 12

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2,7

3,4 5,62,6 4,9 7,8 1,3 2,7

2,3

4,6

4,7

8,9

1,3

5,6 7

2,3

4,4

6,7

8,9

1,2

3,5

6,6

1,2

2,3

3,4

4,5

6,6

6,7

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk file

6

6

2,6

7

7,8

6

External two-way merge sort
• Input: N pages

• Cost for a pass: reading & writing N pages once

• # of passes: height of the tree = log2 𝑁 + 1

• Total cost: 2𝑁 log2 𝑁 + 1 I/Os
• Transfer cost: 2tT𝑁 log2 𝑁 + 1

• Seek cost: 2𝑡𝑆𝑁 𝑙𝑜𝑔2 𝑁 + 1

• total = 2 𝑡𝑇 + 𝑡𝑆 𝑁 log2 𝑁 + 1

CSE462/562 (Fall 2024): Lecture 12

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk fileDisk file

Not so efficient!

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2,7

3,4 5,62,6 4,9 7,8 1,3 2,7

2,3

4,6

4,7

8,9

1,3

5,6 7

2,3

4,4

6,7

8,9

1,2

3,5

6,6

1,2

2,3

3,4

4,5

6,6

6,7

6

6

2,6

7

7,8

7

External multi-way merge sort
• How do we fully utilize all the 𝑀 buffers?

• Solution: (M-1)-way merge-sort

• Pass 0: internal sort to produce initial runs
• read every 𝑀 pages into memory

• use some internal sorting algorithm (e.g., quick sort)

• can produce even larger runs (later)

• write all the 𝑀 pages as a run

CSE462/562 (Fall 2024): Lecture 12
M Main memory buffers

INPUT 1

INPUT M

DiskDisk

INPUT 2

.

𝑁 pages in input

⌈
𝑁

𝑀
⌉ runs after pass 0

Cost:
 2𝑁 pages read/written +

 2
𝑁

𝑀
 seeks

 i.e. 2𝑁𝑡𝑇 + 2
𝑁

𝑀
𝑡𝑆

2,3

4,4

6,9

1,3

5,6

7,8

2,6

PASS 0

Input file3,4 6,2 9,4 8,7 5,6 3,1 2,7 6

7

8

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap/max-heap (aka priority queue)
• supports 𝑂 𝑙𝑜𝑔𝑀 time insertion of any item and deletion of the smallest/largest item
• a complete binary tree where parent is smaller/larger than both children
• how to implement

• numbering nodes level by level sequentially from 1, store in an array 𝐴[1. . 𝑛]
• (how to translate 1-based index to 0-based in C/C++?)

• parent of 𝐴[𝑖] is 𝐴 𝑖/2 , left child of 𝐴 𝑖 is 𝐴[𝑖 ∗ 2], right child of 𝐴[𝑖] is 𝐴[𝑖 ∗ 2 + 1]
• push-down or push-up to maintain the variant

CSE462/562 (Fall 2024): Lecture 12
M Main memory buffers

INPUT 1

INPUT M-1

OUTPUT

DiskDisk

INPUT 2

.

1

4 3

8 5 9

1 4 3 8 5 9

1

2 3

4 5 6

𝐴
9

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Fall 2024): Lecture 12

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

Run 1 Run 2 Run 3

10

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Fall 2024): Lecture 12

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

next

2, 3

1, 3

2, 6

next_sidinput

output

1,2

2,1 2,3

Run 1 Run 2 Run 3

11

key with value 1 from run 2

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Fall 2024): Lecture 12

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

next

2, 3

5, 6

2, 6

next_sid

1

input

output

2,1

2,3

Run 1 Run 2 Run 3

3,2

12

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Fall 2024): Lecture 12

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

next

4, 4

5, 6

2, 6

next_sidinput

output

2,3

3,1

Run 1 Run 2 Run 3

3,2

1,2

13

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Fall 2024): Lecture 12

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

input

output

Run 1 Run 2 Run 3

9

1,2

2,3

3,4

4,5

6,6

6,7

7,8

𝑁 pages to read/write per pass

𝑙𝑜𝑔𝑀−1
𝑁

𝑀
 merge passes

Cost per merge pass:
 2𝑁 pages read/written +
 2𝑁 seeks
Total cost for merge passes:

 2 𝑡𝑇 + 𝑡𝑆 𝑁⌈log𝑀−1⌈
𝑁

𝑀
⌉⌉

14

Cost analysis
• Cost analysis:

• Pass 0: 2𝑁𝑡𝑇 + 2
𝑁

𝑀
𝑡𝑆

• Pass 1, 2, … combined: 2 𝑡𝑇 + 𝑡𝑆 𝑁⌈log𝑀−1⌈
𝑁

𝑀
⌉⌉

• Total = 2𝑡𝑇𝑁 𝑙𝑜𝑔𝑀−1
𝑁

𝑀
+ 1 + 2𝑡𝑆

𝑁

𝑀
+ 𝑁⌈𝑙𝑜𝑔𝑀−1⌈

𝑁

𝑀
⌉⌉

• Can we do it better?

CSE462/562 (Fall 2024): Lecture 12 15

N M=3 =5 =9 =17 =129 =257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

▪ gain of utilizing all available buffers
▪ importance of a high fan-in during merging

Batching I/Os for merge sort
• Refinement 1

• reducing random I/Os by reading/writing 𝐵 pages per run during merge
• using 𝑀 − 1 -way merge sort

• memory usage increases to 𝑀𝐵 pages
• number of pages transferred do not change

• but the number of random seeks per merge pass reduced to approximately 2⌈
𝑁

𝐵
⌉

• total cost reduced to 2𝑡𝑇𝑁 𝑙𝑜𝑔𝑀−1
𝑁

𝑀𝐵
+ 1 + 2𝑡𝑆

𝑁

𝑀𝐵
+ ⌈

𝑁

𝐵
⌉⌈𝑙𝑜𝑔𝑀−1⌈

𝑁

𝑀𝐵
⌉⌉

CSE462/562 (Fall 2024): Lecture 12

MB Main memory buffers

1

input

output
2 B…

1 2 B…

1 2 B…

1 2 B…

16

Exercise: what if we only have 𝑀 pages instead of 𝑀𝐵
pages and still read/write pages in 𝐵-page batches?

2𝑡𝑇𝑁 𝑙𝑜𝑔
⌊
𝑀
𝐵

⌋−1

𝑁

𝑀
+ 1 + 2𝑡𝑆

𝑁

𝑀
+ ⌈

𝑁

𝐵
⌉⌈𝑙𝑜𝑔

⌊
𝑀
𝐵

⌋−1
⌈
𝑁

𝑀
⌉⌉

Pipelining output
• Refinement 2

• in most cases, do not need to write the final file
• pipelining to the next operator
• or output to user

• Hence, no need to count the write of the final pass

• total cost reduced to 𝑡𝑇𝑁 2 𝑙𝑜𝑔 𝑀

𝐵
−1

𝑁

𝑀
+ 1 + 𝑡𝑆 2

𝑁

𝑀
+ ⌈

𝑁

𝐵
⌉(2⌈𝑙𝑜𝑔 𝑀

𝐵
−1

⌈
𝑁

𝑀
⌉⌉ − 1)

CSE462/562 (Fall 2024): Lecture 12

MB Main memory buffers

1

input

output
2 B…

1 2 B…

1 2 B…

1 2 B…

17

Tournament sort
• Refinement 3

• producing initial runs as large as possible in pass 0

• Alternative to quick-sort: “tournament sort” (a.k.a. “heapsort”, “replacement selection”)

• Keep two heaps in memory, H1 and H2, reserve an input buffer page and an output buffer page
read M-2 pages of records, inserting into H1;

while (records left) {

m = H1.removemin(); put m in output buffer;

if (H1 is empty)

swap H1 and H2 (pointer swap only!); start new output run;

else

read in a new record r (use 1 buffer for input pages);

if (r < m) H2.insert(r);

else H1.insert(r);

}

H1.output(); start new run; H2.output();

CSE462/562 (Fall 2024): Lecture 12 18

Tournament sort
• Tournament sort explained:

CSE462/562 (Fall 2024): Lecture 12 19

. . .
12

4

2

8

10
3

5

CURRENT SET
INPUT

OUTPUT

• 1 input, 1 output, M - 2 for current and next set (min heaps)
• Main idea: ensure the smallest key in the current set (H1) is greater than any key that

has been written to this output run.
• If it can’t be satisfied, write to the next set (H2), which goes into the next run.

• Memory usage of the min-heaps combined never exceeds the M-2 pages

Tournament sort

CSE462/562 (Fall 2024): Lecture 12 20

• Fact: average length of a run is 2(M-2)

• Total cost reduced to on average

𝑡𝑇𝑁 2 𝑙𝑜𝑔 𝑀
𝐵 −1

𝑁

2𝑀 − 4
+ 1 + 𝑡𝑆 2

𝑁

2𝑀 − 4
+ ⌈

𝑁

𝐵
⌉(2⌈𝑙𝑜𝑔 𝑀

𝐵 −1
⌈

𝑁

2𝑀 − 4
⌉⌉ − 1)

• Worst-Case:
• What is min length of a run?

• How does this arise?

• Best-Case:
• What is max length of a run?

• How does this arise?

• Quicksort is faster, but … longer runs often means fewer passes!

Hashing basics
• Hash function ℎ: 𝑈 → 𝑀

• 𝑈: key domain, 𝑀 = 0,1,2, … 𝑀 − 1

• Deterministic

• Examples:

• Multiplicative hashing for integers: ℎ 𝑥 = 𝑀 ⋅ 𝑓𝑟𝑎𝑐 𝑥 ∗ 𝑎

• 𝑎: a real number with a good mixture of 0s and 1s

• 𝑓𝑟𝑎𝑐 𝑦 : the fractional part of a real number

• can be efficiently implemented as ℎ 𝑥 =
𝑎𝑥

2𝑞 𝑚𝑜𝑑 𝑚 for appropriately chosen integers a, q, M

• String hashing: SHA-1, MD5

• often available off the shelf

• can combine a salt to create different hash functions

• e.g., SHA-1(concat(a, s)) for some randomly chosen string 𝑎

• not that secure, but works well due to its efficiency

CSE462/562 (Fall 2024): Lecture 12 21

Hashing basics
• (In-memory) hash table

• With a hash function ℎ: 𝑈 → 𝑀

0 1 2 3 … M-2 M-1

h(x) = 2
h(y) = m-2

x y

CSE462/562 (Fall 2024): Lecture 12 22

Hashing basics
• (In-memory) hash table

• With a hash function ℎ: 𝑈 → 𝑀
• How to handle collision?

• Closed hashing vs open hashing
• Sometimes also called open addressing vs closed addressing

0 1 2 3 … M-2 M-1

h(x) = 2
h(y) = M-2
h(z) = 2

x y

0 1 2 3 … M-2 M-1

x y

closed hashing with
linear probing

z

open hashing
with linked list

z

CSE462/562 (Fall 2024): Lecture 12 23

What might go wrong with hashing?
• Too many items with the same hash value

• Any hash table design will fail in this case

• Why can that happen?
1. Too many entries with the same key?

• Not much that we can do, but we can try to incorporate other fields to make the keys distinct if
it’s possible for the user to provide the entire key during lookups

• Alternatively, consider using other types of index

2. Hash collision
• Some hash functions are prone to too many hash collisions

• For instance, you’re hashing pointers of int64_t,
• using modular hashing ℎ 𝑥 = 𝑥 𝑚𝑜𝑑 𝑚 with 𝑚 = 2𝑑 for some d is going to leave many

buckets completely empty

• Desirable properties for good hash functions: small size, “uniform” over hash space, etc.
• Examples include universal hashing, perfect hashing, …

CSE462/562 (Fall 2024): Lecture 12 24

When hash table doesn’t fit in memory?
• Recursive partitioning

• Basic idea:
1. Use partition hash function ℎ𝑝: K → [𝑀] to partition data into 𝑀 roughly equally-sized partitions

CSE462/562 (Fall 2024): Lecture 12 25

M main memory buffers DiskDisk

Relation(s) OUTPUT

2INPUT

1

hash
function

hp M-1

Partitions

1

2

M-1

. . .

When hash table doesn’t fit in memory?
• Recursive partitioning

• Basic idea:
1. Use partition hash function ℎ𝑝: K → [𝑀] to partition data into 𝑀 roughly equally-sized partitions
2. For each partition, if it doesn’t fit in an in-memory hash table -> recurse to step 1.

• Otherwise, build an in-memory hash table using a different hash function ℎ𝑟
and apply the desired operation

CSE462/562 (Fall 2024): Lecture 12 26

R
Hash table for partition

Ri (|Ri|<= M-1 pages)

M main memory buffersDisk

hash
fn
hr

1

2

M-1

OUTPUT

op

Example: deduplication
• Use the hash table as a hash set, i.e., no duplicates

• key = the entire tuple

• op :=
• If key exists in HT, skip.

• If key does not exist in HT,

• copy it to output.

CSE462/562 (Fall 2024): Lecture 12 27

Hash table for partition

Ri (|Ri|<= M-1 pages)

M main memory buffersDisk

hash
fn
hr

1

2

M-1

OUTPUT

op

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Sort operator
	Slide 3: External sorting
	Slide 4: In-memory two-way merge-sort: a starting point
	Slide 5: External two-way merge sort
	Slide 6: External two-way merge sort
	Slide 7: External two-way merge sort
	Slide 8: External multi-way merge sort
	Slide 9: General multi-way merge sort
	Slide 10: General multi-way merge sort
	Slide 11: General multi-way merge sort
	Slide 12: General multi-way merge sort
	Slide 13: General multi-way merge sort
	Slide 14: General multi-way merge sort
	Slide 15: Cost analysis
	Slide 16: Batching I/Os for merge sort
	Slide 17: Pipelining output
	Slide 18: Tournament sort
	Slide 19: Tournament sort
	Slide 20: Tournament sort
	Slide 21: Hashing basics
	Slide 22: Hashing basics
	Slide 23: Hashing basics
	Slide 24: What might go wrong with hashing?
	Slide 25: When hash table doesn’t fit in memory?
	Slide 26: When hash table doesn’t fit in memory?
	Slide 27: Example: deduplication

