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Revisit of the big picture of file organization
• Fields → Records → Pages → Heap Files (→ Files on File System) → Storage Device

• What do we support?
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Heap file

What do we support?
• Insert a record -- O(1) time & I/O, insert into any free page

• Update/delete of a record with known record ID -- O(1) time & I/O, pin page & update

• Enumerating all data records -- linear time & I/O, scan through all pages & enumerate records on each page
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Revisit of the big picture of file organization
• Fields → Records → Pages → Heap Files (→ Files on File System) → Storage Device

• What do we support?
• Insert a record 
• Update/delete of a record with known record ID
• Enumerating all data records

• How do I find the student with name “Alice”?
• Enumerating all records to locate Alice -- linear time & I/O for one record!

• Can we do better?
• Binary search? Search trees? Hash table? Partitioning?
• Do we always need to store records as a whole?

• Needs alternative file organization
• These are called access methods (a name that comes from mainframe OS)

• data structures and algorithms for sequentially or randomly retrieving data by keys
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Access methods
• Heap file: unordered, good for enumerating all records

• Sorted file: best for random retrieval by search key and/or in search key order
• A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.

• Has nothing to do with (primary/candidate) keys.

• Implication: there may be duplicate keys in a sorted file

• Must be based on files that support random access of data pages with consecutive page numbers

• e.g., for a sorted file with M pages, page numbers are 0, 1, 2, …, M-1.

• Need support for random access of page i efficiently without linear traversal

• Compare the costs of record insertion/deletion/search in sorted file vs heap file?
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Cost Model for Analysis
• We assume fixed-length records and ignore CPU costs for simplicity:

• N: the number of records
• B:  Number of records per page
• T: Number of matching record in a search
• Cost model: # of I/Os (also ignoring pre-fetching and/or random vs sequential access), and thus even 

I/O cost is loosely approximated.
• Average-case analysis (unless o/w specified); based on several simplistic assumptions.

• Good enough for knowing the overall trends.
• Reality is a lot messier than this.

• Additional assumptions
• Single record to insert and delete; unless o/w specified 
• Equality selection - exactly one match; unless o/w specified
• Heap Files:

• Insert always appends to end of file.
• Sorted Files:

• Two alternatives:
• No need to compact the file after deletions.
• Files compacted after deletions.

• Selections on search key (the attribute(s) used for sorting).
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Cost of operations
N: Number of records
N/B: The number of data pages
B:  Number of records per page
T:  Number of matching records

# of I/Os Heap File Sorted File

Scan all records

Equality Search: if we 
know there’s only 1 
matching record

Range Search

Insert: compact for 
sorted file

Delete: no compact 
for sorted file

N/B N/B

0.5N/B, 

Best Case: 1, 

Worst Case: N/B

log2 (N/B)

Best case: 1.

N/B log2 (N/B) + #match pages =

   log2 (N/B) + T/B

2 log2 (N/B) + N/B (read + write 
for 0.5N/B pages on average)

0.5N/B + 1 log2 (N/B) + 1
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Access methods
• Heap file: unordered, good for enumerating all records

• Sorted file: best for random retrieval by search key and/or in search key order
• A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.

• Has nothing to do with (primary/candidate) keys!

• Columnar store: store individual column/column sets in separate files
• Also called vertical partitioning

• Good for queries with projection -- saves I/O, SIMD friendly

CSE462/562 (Fall 2024): Lecture 13 9



• Good compression, fast scan, but more expensive to update in general

Columnar Storage
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sid

100

101

adm_year

2021

2020

name

Charlie

David

adm_year

2021

2020

sid

102

103

name

Alice

Bob

major

CS

CE

major

CS

CS

row group 1

row group 2

Column segment: 
compressed and has 
min/max stats 

10

Example: SELECT COUNT(*) from student WHERE major = ‘CS’;

Assumptions: adm_year stored as 32-bit integers, no compression, no page/group/column header
B = # of records/page on average, B’=# of 32-bit values/page

Row store (heap file): 
N

B
=  𝑁/

𝑃𝐴𝐺𝐸 𝑆𝐼𝑍𝐸

𝑅𝐸𝐶𝑂𝑅𝐷 𝐿𝐸𝑁𝐺𝑇𝐻
 I/O

Columnar store (uncompressed): 
𝑁

𝐵′ = 𝑁/
𝑃𝐴𝐺𝐸 𝑆𝐼𝑍𝐸

4
 I/O



Access methods
• Heap file: unordered, good for enumerating all records

• Sorted file: best for random retrieval by search key and/or in search key order
• A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.

• Has nothing to do with (primary/candidate) keys!

• Columnar store: store individual column/column sets in separate files
• Also called vertical partitioning

• Good for queries with projection -- saves I/O, SIMD friendly

• Indexes
• Data structures for efficient search with a search key

• Similar to sorted files, but can be a secondary storage format
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Index
• Sometimes, we want to retrieve records by specifying the values in one or more fields

• Find all students in CSE

• Find all students admitted in year 2021

• Not very efficient to handle with heap file/sorted file
• Heap file: always need to linear scan

• Sorted file: only (somewhat) efficient for the sorted column

• i.e., can’t use binary search on a file sorted on major for specific adm_year

sid name major adm_year

100 Alice CS 2021

101 Bob CE 2020

102 Charlie CS 2021

103 David CS 2020

student

Meta
Page

Allocated Pages

Record

Record Record
Record

100 0 2 70 40 2
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Index
• An index: a data structure that speeds up search on a few fields on a relation

• Maps index key 𝑘 to data entry 𝑘∗

• Any subset of the columns of a relation can be the index key 𝑘
• Index key is not (candidate/primary) key; doesn’t have to be unique

• Data entry 𝑘∗ 
• e.g., the data record itself
• Store the key k with the data entry 𝑘∗?

• Sometimes we do, sometimes we don’t
• Essentially an associative container, but more with more functionalities

• std::map/std::unordered_map in C++
• java.util.TreeMap/java.util.HashMap in Java
• dictionary in Python

sid name major adm_year

100 Alice CS 2021

101 Bob CE 2020

102 Charlie CS 2021

103 David CS 2020

student

Meta
Page

Allocated Pages

Record

Record Record
Record

Index

100 0 2 70 40 2
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Index classification
• Representation of data entries in index

• i.e., what kind of info is the index actually storing?

• 3 alternatives

• What selections does it support

• Indexing techniques: tree/hash/other

• Primary vs. Secondary Indexes
• Unique indexes

• Clustered vs. Unclustered Indexes

• Single Key vs. Composite Indexes
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Alternatives for the data entry 𝒌∗ in index
• Three alternatives:

• Alternative 1: the record itself (with its key 𝑘)

• Alternative 2: <𝑘, record ID of a matching record>

• Alternative 3: <k, list of record IDs of matching records>

• Choice of the alternative is orthogonal to the indexing technique
• Example of indexing techniques: B+-Tree, hash index, R-Tree, KD-Tree, and etc…

• A heap/sorted file can have multiple indexes
• e.g., a B-tree index on adm_year and a hash index on major for the heap file of student relation

• each usually stored as a separate file

• usually at most one alternative-1 index per file (why?)
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More on the alternatives of the data entries in index

• Alternative 1: actual data record (with its key 𝑘∗)
• If this is used, it is another file organization for data records (aka index file)

• At most one alt-1 index

• Good: avoids record id/pointer lookups

• Bad: less efficient to maintain for insertion/deletion/update

• Alternative 2 & 3
<𝑘, record id of a matching record> or <𝑘, list of record ids of matching records>
• Good: Can have multiple alt-2/alt-3 indexes

• Good: more efficient to maintain than alternative 1

• Bad: additional record id/pointer lookup (usually random I/O)

• How to work around it? Include non-key columns.

• Alt-3 is more compact than alt-2, but the variation in data entry size can be much larger

• Harder to deal with when they need to be split/merged

• Alt-3: key skew could lead to extremely long record id lists

• Workaround: split them into shorter alt-3 data entries that fit into individual data pages
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Index operations
• Inserts a data entry the index

• Deletes a data entry from the index

• Updates the value of a data entry
• Can you change the index key of a data entry?

• Search and scan
• Point lookup: find the data entry (entries) of a search key

• Range scan: enumerate all the data entries in a range of search keys

• e.g., adm_year ∈ [2020, 2021], adm_year > 2020, adm_year ≤ 2015

• sometimes the search key is a subset of the index key

• Full index scan: enumerate all data entries in an index

• Might be useful for ordering/efficiency

• Other search operations:

• String prefix matching

• 2-D, 3-D, or higher dimensional range search

• …
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Index Types
• Tree and hash indexes are the two most common categories of indexes

• More details in the next 3-4 lectures

• Example: B-Tree and static hash index
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Tree-based indexes

P0 K 1 P 1 K 2 P 2 K m P m

one  index entry

Internal

Pages

Pages 

(Sorted by search key)

Leaf

•  Leaf pages contain data entries, and are chained (prev & next page ids)

•  Internal pages have index entries; only used to direct searches

•  Good for equality and range selection

• Results are ordered by index key

another index entry yet another index entry

An internal page
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Example: B-Tree index

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Data Entries <  17
Data Entries >=  17

Note how data entries
in leaf level are sorted

Pointers to Actual 
Data Pages  (rid)

Heap File for the Data Records

• Technically, this is the B+-Tree index, not the original B-Tree
• Difference: B+-Tree only stores keys rather than data entries in internal nodes

• But most DBMS uses B+-Tree, but use the term B-Tree…
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Hash-based indexes
• Good for equality selections. 

• Index is a collection of buckets. 
• Bucket = primary page plus zero or more overflow pages. 

• Buckets contain data entries. 

• Hashing function h:  h(r) = bucket in which (data entry for) record r belongs.
h looks at the index key fields of r.
• No need for “index entries” in this scheme.
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Example: static hashing index
• Fixed number of primary pages = # of buckets (denoted as M)

• allocated sequentially; never de-allocated

• allocate overflow pages if needed

• h(k) % M = the bucket id for a data entry with index key k. 

h(key) mod M

h
key

Primary bucket pages Overflow pages

1

0

M-1

2*

3*

14*

16*

7* 5*

8*
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Clustered vs unclustered index
• Clustered index

• An index over a file such that the order of the data records is the same as, or “close to” that of the 
index data entries

• A file can only be clustered on one index key

• Sorted file can be used for clustering, but may be expensive to maintain

• Can we use heap file? Yes, but with some tricks.

• Using Alternative 1 in a B+-tree implies clustered, but not vice-versa.

• aka clustered file
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Clustered vs unclustered index
• Assume alternative 2 for data entries, and data records are stored in a heap file.

• To build clustered index

• first sort the heap file, with some free space on each block for future updates/inserts.

• The percentage of free space in the initial sort/append is called fill factor

• Overflow pages may be needed for inserts/updates. 

• Thus, the order of data records is “close to”, if not not identical to, the sort order.
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Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED
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Access cost of clustered vs unclustered index
• Cost of accessing data records through index varies greatly based on whether index is clustered!

• e.g. range scan with 𝑛 matching data records in a B-Tree

• assuming we ignore the buffer pool’s effect

• clustered: 𝐻 +
𝑛

𝑀
  I/Os

• unclustered: 𝐻 +
𝑛

𝐵
− 1 + 𝑛 I/Os
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Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

H = number 
of levels

B data entries
per leaf page
on average

M data records per 
heap page on average
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Tradeoffs between clustered and unclustered indexes
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• What are the tradeoffs?

• Clustered Pros
• Efficient for range searches for records: sequential access in a sorted file

• May be able to do some types of compression

• Locality benefits

• Clustered Cons
• Expensive to maintain (on the fly or sloppy with reorganization)

• Unclustered
• Pros: easy and efficient to maintain, allow multiple indexes 

• Cons: expensive for range scans for records: 1 random IO for each matching record.
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Primary, secondary and unique index
• Primary index: index key contains the primary key

• e.g., for student table, an index over (sid) is its primary index

• at most one per relation

• Unique index: index key contains a candidate key
• Primary index is a unique index, but not vice versa

• Can be clustered or unclustered.

• Secondary index (not well-defined but often used)
• It may have different meanings

• an index that is not indexed over the primary key

• unclustered

• or both
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