
CSE462/562: Database Systems (Fall 24)

Lecture 13: Access Methods and indexing

10/17/2024

Last updated: 10/9/2024 2:00 PM

Revisit of the big picture of file organization
• Fields → Records → Pages → Heap Files (→ Files on File System) → Storage Device

• What do we support?

CSE462/562 (Fall 2024): Lecture 13 2

HeapFilepage 3page 2page 1page 0

Record
Record

Record
Record

Record
Record
Record

Record
Record

…

Heap file

What do we support?
• Insert a record -- O(1) time & I/O, insert into any free page

• Update/delete of a record with known record ID -- O(1) time & I/O, pin page & update

• Enumerating all data records -- linear time & I/O, scan through all pages & enumerate records on each page

CSE462/562 (Fall 2024): Lecture 13 3

HeapFilepage 3page 2page 1page 0

Record
Record

Record
Record

Record
Record
Record

Record
Record

…

Revisit of the big picture of file organization
• Fields → Records → Pages → Heap Files (→ Files on File System) → Storage Device

• What do we support?
• Insert a record
• Update/delete of a record with known record ID
• Enumerating all data records

• How do I find the student with name “Alice”?
• Enumerating all records to locate Alice -- linear time & I/O for one record!

• Can we do better?
• Binary search? Search trees? Hash table? Partitioning?
• Do we always need to store records as a whole?

• Needs alternative file organization
• These are called access methods (a name that comes from mainframe OS)

• data structures and algorithms for sequentially or randomly retrieving data by keys

CSE462/562 (Fall 2024): Lecture 13 4

HeapFilepage 3page 2page 1page 0

Record
Record

Record
Record

Record
Record
Record

Record
Record

…

Access methods
• Heap file: unordered, good for enumerating all records

• Sorted file: best for random retrieval by search key and/or in search key order
• A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.

• Has nothing to do with (primary/candidate) keys.

• Implication: there may be duplicate keys in a sorted file

• Must be based on files that support random access of data pages with consecutive page numbers

• e.g., for a sorted file with M pages, page numbers are 0, 1, 2, …, M-1.

• Need support for random access of page i efficiently without linear traversal

• Compare the costs of record insertion/deletion/search in sorted file vs heap file?

CSE462/562 (Fall 2024): Lecture 13 5

Cost Model for Analysis
• We assume fixed-length records and ignore CPU costs for simplicity:

• N: the number of records
• B: Number of records per page
• T: Number of matching record in a search
• Cost model: # of I/Os (also ignoring pre-fetching and/or random vs sequential access), and thus even

I/O cost is loosely approximated.
• Average-case analysis (unless o/w specified); based on several simplistic assumptions.

• Good enough for knowing the overall trends.
• Reality is a lot messier than this.

• Additional assumptions
• Single record to insert and delete; unless o/w specified
• Equality selection - exactly one match; unless o/w specified
• Heap Files:

• Insert always appends to end of file.
• Sorted Files:

• Two alternatives:
• No need to compact the file after deletions.
• Files compacted after deletions.

• Selections on search key (the attribute(s) used for sorting).

CSE462/562 (Fall 2024): Lecture 13 6

Cost of operations
N: Number of records
N/B: The number of data pages
B: Number of records per page
T: Number of matching records

of I/Os Heap File Sorted File

Scan all records

Equality Search: if we
know there’s only 1
matching record

Range Search

Insert: compact for
sorted file

Delete: no compact
for sorted file

N/B N/B

0.5N/B,

Best Case: 1,

Worst Case: N/B

log2 (N/B)

Best case: 1.

N/B log2 (N/B) + #match pages =

 log2 (N/B) + T/B

2 log2 (N/B) + N/B (read + write
for 0.5N/B pages on average)

0.5N/B + 1 log2 (N/B) + 1

CSE462/562 (Fall 2024): Lecture 13 7

Cost of operations
N: Number of records
N/B: The number of data pages
B: Number of records per page
T: Number of matching records

of I/Os Heap File Sorted File

Scan all records

Equality Search: if we
know there’s only 1
matching record

Range Search

Insert: compact for
sorted file

Delete: compact for
sorted file

N/B N/B

0.5N/B,

Best Case: 1,

Worst Case: N/B

log2 (N/B)

Best case: 1.

N/B log2 (N/B) + #match pages =

 log2 (N/B) + T/B

2 log2 (N/B) + N/B (read + write
for 0.5N/B pages on average)

0.5N/B + 1 log2 (N/B) + N/B

CSE462/562 (Fall 2024): Lecture 13 8

Access methods
• Heap file: unordered, good for enumerating all records

• Sorted file: best for random retrieval by search key and/or in search key order
• A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.

• Has nothing to do with (primary/candidate) keys!

• Columnar store: store individual column/column sets in separate files
• Also called vertical partitioning

• Good for queries with projection -- saves I/O, SIMD friendly

CSE462/562 (Fall 2024): Lecture 13 9

• Good compression, fast scan, but more expensive to update in general

Columnar Storage

CSE462/562 (Fall 2024): Lecture 13

sid

100

101

adm_year

2021

2020

name

Charlie

David

adm_year

2021

2020

sid

102

103

name

Alice

Bob

major

CS

CE

major

CS

CS

row group 1

row group 2

Column segment:
compressed and has
min/max stats

10

Example: SELECT COUNT(*) from student WHERE major = ‘CS’;

Assumptions: adm_year stored as 32-bit integers, no compression, no page/group/column header
B = # of records/page on average, B’=# of 32-bit values/page

Row store (heap file):
N

B
= 𝑁/

𝑃𝐴𝐺𝐸 𝑆𝐼𝑍𝐸

𝑅𝐸𝐶𝑂𝑅𝐷 𝐿𝐸𝑁𝐺𝑇𝐻
 I/O

Columnar store (uncompressed):
𝑁

𝐵′ = 𝑁/
𝑃𝐴𝐺𝐸 𝑆𝐼𝑍𝐸

4
 I/O

Access methods
• Heap file: unordered, good for enumerating all records

• Sorted file: best for random retrieval by search key and/or in search key order
• A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.

• Has nothing to do with (primary/candidate) keys!

• Columnar store: store individual column/column sets in separate files
• Also called vertical partitioning

• Good for queries with projection -- saves I/O, SIMD friendly

• Indexes
• Data structures for efficient search with a search key

• Similar to sorted files, but can be a secondary storage format

CSE462/562 (Fall 2024): Lecture 13 11

Index
• Sometimes, we want to retrieve records by specifying the values in one or more fields

• Find all students in CSE

• Find all students admitted in year 2021

• Not very efficient to handle with heap file/sorted file
• Heap file: always need to linear scan

• Sorted file: only (somewhat) efficient for the sorted column

• i.e., can’t use binary search on a file sorted on major for specific adm_year

sid name major adm_year

100 Alice CS 2021

101 Bob CE 2020

102 Charlie CS 2021

103 David CS 2020

student

Meta
Page

Allocated Pages

Record

Record Record
Record

100 0 2 70 40 2

CSE462/562 (Fall 2024): Lecture 13 12

Index
• An index: a data structure that speeds up search on a few fields on a relation

• Maps index key 𝑘 to data entry 𝑘∗

• Any subset of the columns of a relation can be the index key 𝑘
• Index key is not (candidate/primary) key; doesn’t have to be unique

• Data entry 𝑘∗
• e.g., the data record itself
• Store the key k with the data entry 𝑘∗?

• Sometimes we do, sometimes we don’t
• Essentially an associative container, but more with more functionalities

• std::map/std::unordered_map in C++
• java.util.TreeMap/java.util.HashMap in Java
• dictionary in Python

sid name major adm_year

100 Alice CS 2021

101 Bob CE 2020

102 Charlie CS 2021

103 David CS 2020

student

Meta
Page

Allocated Pages

Record

Record Record
Record

Index

100 0 2 70 40 2

CSE462/562 (Fall 2024): Lecture 13 13

Index classification
• Representation of data entries in index

• i.e., what kind of info is the index actually storing?

• 3 alternatives

• What selections does it support

• Indexing techniques: tree/hash/other

• Primary vs. Secondary Indexes
• Unique indexes

• Clustered vs. Unclustered Indexes

• Single Key vs. Composite Indexes

CSE462/562 (Fall 2024): Lecture 13 14

Alternatives for the data entry 𝒌∗ in index
• Three alternatives:

• Alternative 1: the record itself (with its key 𝑘)

• Alternative 2: <𝑘, record ID of a matching record>

• Alternative 3: <k, list of record IDs of matching records>

• Choice of the alternative is orthogonal to the indexing technique
• Example of indexing techniques: B+-Tree, hash index, R-Tree, KD-Tree, and etc…

• A heap/sorted file can have multiple indexes
• e.g., a B-tree index on adm_year and a hash index on major for the heap file of student relation

• each usually stored as a separate file

• usually at most one alternative-1 index per file (why?)

CSE462/562 (Fall 2024): Lecture 13 15

More on the alternatives of the data entries in index

• Alternative 1: actual data record (with its key 𝑘∗)
• If this is used, it is another file organization for data records (aka index file)

• At most one alt-1 index

• Good: avoids record id/pointer lookups

• Bad: less efficient to maintain for insertion/deletion/update

• Alternative 2 & 3
<𝑘, record id of a matching record> or <𝑘, list of record ids of matching records>
• Good: Can have multiple alt-2/alt-3 indexes

• Good: more efficient to maintain than alternative 1

• Bad: additional record id/pointer lookup (usually random I/O)

• How to work around it? Include non-key columns.

• Alt-3 is more compact than alt-2, but the variation in data entry size can be much larger

• Harder to deal with when they need to be split/merged

• Alt-3: key skew could lead to extremely long record id lists

• Workaround: split them into shorter alt-3 data entries that fit into individual data pages

CSE462/562 (Fall 2024): Lecture 13 16

Index operations
• Inserts a data entry the index

• Deletes a data entry from the index

• Updates the value of a data entry
• Can you change the index key of a data entry?

• Search and scan
• Point lookup: find the data entry (entries) of a search key

• Range scan: enumerate all the data entries in a range of search keys

• e.g., adm_year ∈ [2020, 2021], adm_year > 2020, adm_year ≤ 2015

• sometimes the search key is a subset of the index key

• Full index scan: enumerate all data entries in an index

• Might be useful for ordering/efficiency

• Other search operations:

• String prefix matching

• 2-D, 3-D, or higher dimensional range search

• …
CSE462/562 (Fall 2024): Lecture 13 17

Index Types
• Tree and hash indexes are the two most common categories of indexes

• More details in the next 3-4 lectures

• Example: B-Tree and static hash index

CSE462/562 (Fall 2024): Lecture 13 18

Tree-based indexes

P0 K 1 P 1 K 2 P 2 K m P m

one index entry

Internal

Pages

Pages

(Sorted by search key)

Leaf

• Leaf pages contain data entries, and are chained (prev & next page ids)

• Internal pages have index entries; only used to direct searches

• Good for equality and range selection

• Results are ordered by index key

another index entry yet another index entry

An internal page

CSE462/562 (Fall 2024): Lecture 13 19

Example: B-Tree index

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Data Entries < 17
Data Entries >= 17

Note how data entries
in leaf level are sorted

Pointers to Actual
Data Pages (rid)

Heap File for the Data Records

• Technically, this is the B+-Tree index, not the original B-Tree
• Difference: B+-Tree only stores keys rather than data entries in internal nodes

• But most DBMS uses B+-Tree, but use the term B-Tree…

CSE462/562 (Fall 2024): Lecture 13 20

Hash-based indexes
• Good for equality selections.

• Index is a collection of buckets.
• Bucket = primary page plus zero or more overflow pages.

• Buckets contain data entries.

• Hashing function h: h(r) = bucket in which (data entry for) record r belongs.
h looks at the index key fields of r.
• No need for “index entries” in this scheme.

CSE462/562 (Fall 2024): Lecture 13 21

Example: static hashing index
• Fixed number of primary pages = # of buckets (denoted as M)

• allocated sequentially; never de-allocated

• allocate overflow pages if needed

• h(k) % M = the bucket id for a data entry with index key k.

h(key) mod M

h
key

Primary bucket pages Overflow pages

1

0

M-1

2*

3*

14*

16*

7* 5*

8*

CSE462/562 (Fall 2024): Lecture 13 22

Clustered vs unclustered index
• Clustered index

• An index over a file such that the order of the data records is the same as, or “close to” that of the
index data entries

• A file can only be clustered on one index key

• Sorted file can be used for clustering, but may be expensive to maintain

• Can we use heap file? Yes, but with some tricks.

• Using Alternative 1 in a B+-tree implies clustered, but not vice-versa.

• aka clustered file

CSE462/562 (Fall 2024): Lecture 13 23

Clustered vs unclustered index
• Assume alternative 2 for data entries, and data records are stored in a heap file.

• To build clustered index

• first sort the heap file, with some free space on each block for future updates/inserts.

• The percentage of free space in the initial sort/append is called fill factor

• Overflow pages may be needed for inserts/updates.

• Thus, the order of data records is “close to”, if not not identical to, the sort order.

CSE462/562 (Fall 2024): Lecture 13

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

24

Access cost of clustered vs unclustered index
• Cost of accessing data records through index varies greatly based on whether index is clustered!

• e.g. range scan with 𝑛 matching data records in a B-Tree

• assuming we ignore the buffer pool’s effect

• clustered: 𝐻 +
𝑛

𝑀
 I/Os

• unclustered: 𝐻 +
𝑛

𝐵
− 1 + 𝑛 I/Os

CSE462/562 (Fall 2024): Lecture 13

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

H = number
of levels

B data entries
per leaf page
on average

M data records per
heap page on average

25

Tradeoffs between clustered and unclustered indexes

CSE462/562 (Fall 2024): Lecture 13

• What are the tradeoffs?

• Clustered Pros
• Efficient for range searches for records: sequential access in a sorted file

• May be able to do some types of compression

• Locality benefits

• Clustered Cons
• Expensive to maintain (on the fly or sloppy with reorganization)

• Unclustered
• Pros: easy and efficient to maintain, allow multiple indexes

• Cons: expensive for range scans for records: 1 random IO for each matching record.

26

Primary, secondary and unique index
• Primary index: index key contains the primary key

• e.g., for student table, an index over (sid) is its primary index

• at most one per relation

• Unique index: index key contains a candidate key
• Primary index is a unique index, but not vice versa

• Can be clustered or unclustered.

• Secondary index (not well-defined but often used)
• It may have different meanings

• an index that is not indexed over the primary key

• unclustered

• or both

CSE462/562 (Fall 2024): Lecture 13 27

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Revisit of the big picture of file organization
	Slide 3: Heap file
	Slide 4: Revisit of the big picture of file organization
	Slide 5: Access methods
	Slide 6: Cost Model for Analysis
	Slide 7: Cost of operations
	Slide 8: Cost of operations
	Slide 9: Access methods
	Slide 10: Columnar Storage
	Slide 11: Access methods
	Slide 12: Index
	Slide 13: Index
	Slide 14: Index classification
	Slide 15: Alternatives for the data entry bold italic k to the asterisk operator in index
	Slide 16: More on the alternatives of the data entries in index
	Slide 17: Index operations
	Slide 18: Index Types
	Slide 19: Tree-based indexes
	Slide 20: Example: B-Tree index
	Slide 21: Hash-based indexes
	Slide 22: Example: static hashing index
	Slide 23: Clustered vs unclustered index
	Slide 24: Clustered vs unclustered index
	Slide 25: Access cost of clustered vs unclustered index
	Slide 26: Tradeoffs between clustered and unclustered indexes
	Slide 27: Primary, secondary and unique index

