CSE462/562: Database Systems (Fall 24)
Lecture 13: Access Methods and indexing
10/17/2024

University at Buffalo

s Department of Computer Science
and Engineering
School of Engineering and Applied Sciences

Last updated: 10/9/2024 2:00 PM

Revisit of the big picture of file organization

* Fields = Records — Pages — Heap Files (— Files on File System) — Storage Device

Record Record Record

Record Record Record Record
3 Record Record .
 What do we support: vage0 | pagel page2 | “oage3 | HeapFile

CSE462/562 (Fall 2024): Lecture 13

Heap file

Record | Record Record

Record Record Record Record

page 0 page 1 page 2 page 3 HeapFile

What do we support?

* Insert a record -- O(1) time & 1/O, insert into any free page
* Update/delete of a record with known record ID -- O(1) time & 1/0, pin page & update
* Enumerating all data records -- linear time & |/O, scan through all pages & enumerate records on each page

CSE462/562 (Fall 2024): Lecture 13 3

Revisit of the big picture of file organization

* Fields = Records — Pages — Heap Files (— Files on File System) — Storage Device

Record Record Record
Record Record Record Record
* What do we support? Record Record

page 0 page 1 page 2 page 3 HeapFile

* Insert a record
Update/delete of a record with known record ID
Enumerating all data records

How do | find the student with name “Alice”?

* Enumerating all records to locate Alice -- linear time & 1/O for one record!
Can we do better?

* Binary search? Search trees? Hash table? Partitioning?

* Do we always need to store records as a whole?

* Needs alternative file organization
* These are called access methods (a name that comes from mainframe OS)
» data structures and algorithms for sequentially or randomly retrieving data by keys

CSE462/562 (Fall 2024): Lecture 13

Access methods

* Heap file: unordered, good for enumerating all records

 Sorted file: best for random retrieval by search key and/or in search key order

* A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.
* Has nothing to do with (primary/candidate) keys.
* Implication: there may be duplicate keys in a sorted file

* Must be based on files that support random access of data pages with consecutive page numbers
e e.g., for a sorted file with M pages, page numbers are 0, 1, 2, ..., M-1.
* Need support for random access of page i efficiently without linear traversal

* Compare the costs of record insertion/deletion/search in sorted file vs heap file?

Cost Model for Analysis

* We assume fixed-length records and ignore CPU costs for simplicity:
N: the number of records

 B: Number of records per page

* T: Number of matching record in a search

* Cost model: # of I/Os (also ignoring pre-fetching and/or random vs sequential access), and thus even
|/O cost is loosely approximated.

» Average-case analysis (unless o/w specified); based on several simplistic assumptions.
* Good enough for knowing the overall trends.
* Reality is a lot messier than this.

* Additional assumptions
» Single record to insert and delete; unless o/w specified
* Equality selection - exactly one match; unless o/w specified
* Heap Files:
* Insert always appends to end of file.
e Sorted Files:
* Two alternatives:
* No need to compact the file after deletions.
* Files compacted after deletions.
* Selections on search key (the attribute(s) used for sorting).

CSE462/562 (Fall 2024): Lecture 13

Cost of operations

N: Number of records
N/B: The number of data pages
B: Number of records per page

T: Number of matching records

matching record

of 1/0s Heap File Sorted File
Scan all records N/B N/B
Equality Search: if we | 0.5N/B, log, (N/B)
know there’sonly 1 | Best Case: 1, Best case: 1.

Worst Case: N/B

Range Search

for sorted file

N/B log, (N/B) + #match pages =
log, (N/B) + T/B
Insert: compact for 2 log, (N/B) + N/B (read + write
sorted file for 0.5N/B pages on average)
Delete: no compact | g5n/B+1 log, (N/B) + 1

CSE462/562 (Fall 2024): Lecture 13

Cost of operations

N: Number of records
N/B: The number of data pages
B: Number of records per page

T: Number of matching records

matching record

of 1/0s Heap File Sorted File
Scan all records N/B N/B
Equality Search: if we | 0.5N/B, log, (N/B)
know there’sonly 1 | Best Case: 1, Best case: 1.

Worst Case: N/B

Range Search

sorted file

N/B log, (N/B) + #match pages =
log, (N/B) + T/B
Insert: compact for 2 log, (N/B) + N/B (read + write
sorted file for 0.5N/B pages on average)
Delete: compactfor | gs5n/B+1 log, (N/B) + N/B

CSE462/562 (Fall 2024): Lecture 13

Access methods

* Heap file: unordered, good for enumerating all records

 Sorted file: best for random retrieval by search key and/or in search key order

* A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.
* Has nothing to do with (primary/candidate) keys!

e Columnar store: store individual column/column sets in separate files
* Also called vertical partitioning

* Good for queries with projection -- saves 1/O, SIMD friendly

CSE462/562 (Fall 2024): Lecture 13

Columnar Storage

* Good compression, fast scan, but more expensive to update in general

aJ[name J\Lmeior
/ 100 Alice CS 2021
Column segment: 101 Bob CE 2020 row group 1
compressed and has _
min/max stats m m m adm—year
102 Charlie CS 2021
103 David CS 2020 row group 2

Example: SELECT COUNT (*) from student WHERE major = ‘CS’;

Assumptions: adm_year stored as 32-bit integers, no compression, no page/group/column header
B = # of records/page on average, B’=# of 32-bit values/page

SN PAGE SIZE
Row store (heap file): B N/ lRECORD LENGTHl /O
Columnar store (uncompressed): g =N/ l%jlzﬂ /O

CSE462/562 (Fall 2024): Lecture 13

10

Access methods

Heap file: unordered, good for enumerating all records

Sorted file: best for random retrieval by search key and/or in search key order

* A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.
* Has nothing to do with (primary/candidate) keys!

e Columnar store: store individual column/column sets in separate files
* Also called vertical partitioning
* Good for queries with projection -- saves 1/O, SIMD friendly

* Indexes
* Data structures for efficient search with a search key
» Similar to sorted files, but can be a secondary storage format

Index

* Sometimes, we want to retrieve records by specifying the values in one or more fields
* Find all students in CSE
* Find all students admitted in year 2021

* Not very efficient to handle with heap file/sorted file

mmm

101
102
103

* Heap file: always need to linear scan

» Sorted file: only (somewhat) efficient for the sorted column
* i.e., can’t use binary search on a file sorted on major for specific adm _year

Alice
Bob
Charlie
David

student

CE
CS
CS

2021
2020
2021
2020

N YN

Recai =
/ | Allocated Pages
|100| 0 | 2 7040 | 2
Meta _/ }_/

Page

CSE462/562 (Fall 2024): Lecture 13 12

Index

* Anindex: a data structure that speeds up search on a few fields on a relation
* Maps index key k to data entry k*
* Any subset of the columns of a relation can be the index key k
* Index key is not (candidate/primary) key; doesn’t have to be unique
 Dataentry k”
* e.g., the datarecord itself
» Store the key k with the data entry k*?
* Sometimes we do, sometimes we don’t
* Essentially an associative container, but more with more functionalities
* std::map/std::unordered_map in C++
* java.util.TreeMap/java.util.HashMap in Java
e dictionary in Python

student TN YN

mmm — m‘lmm =
y 9
Alice CS 2021 / Allocated Pages

[100] 0 [2 | 70|40 2
101 Bob CE 2020 Meta - N
102 Charlie CS 2021 Page
103 David CS 2020

CSE462/562 (Fall 2024): Lecture 13 13

Index classification

Representation of data entries in index
* i.e., what kind of info is the index actually storing?
e 3 alternatives

What selections does it support
Indexing techniques: tree/hash/other

Primary vs. Secondary Indexes
* Unique indexes

Clustered vs. Unclustered Indexes

Single Key vs. Composite Indexes

CSE462/562 (Fall 2024): Lecture 13

14

Alternatives for the data entry k™ in index

 Three alternatives:

* Alternative 1: the record itself (with its key k)
» Alternative 2: <k, record ID of a matching record>
* Alternative 3: <k, list of record IDs of matching records>

* Choice of the alternative is orthogonal to the indexing technique
* Example of indexing techniques: B+-Tree, hash index, R-Tree, KD-Tree, and etc...

* A heap/sorted file can have multiple indexes

* e.g., a B-treeindex on adm_year and a hash index on major for the heap file of student relation
* each usually stored as a separate file
e usually at most one alternative-1 index per file (why?)

CSE462/562 (Fall 2024): Lecture 13

15

More on the alternatives of the data entries in index

 Alternative 1: actual data record (with its key k™)
 If this is used, it is another file organization for data records (aka index file)

e At most one alt-1 index
* Good: avoids record id/pointer lookups

Bad: less efficient to maintain for insertion/deletion/update

e Alternative 2 & 3

<k,

record id of a matching record> or <k, list of record ids of matching records>

Good: Can have multiple alt-2/alt-3 indexes
Good: more efficient to maintain than alternative 1
Bad: additional record id/pointer lookup (usually random 1/0)
 How to work around it? Include non-key columns.
Alt-3 is more compact than alt-2, but the variation in data entry size can be much larger
* Harder to deal with when they need to be split/merged
Alt-3: key skew could lead to extremely long record id lists
* Workaround: split them into shorter alt-3 data entries that fit into individual data pages

CSE462/562 (Fall 2024): Lecture 13

16

Index operations

Inserts a data entry the index
Deletes a data entry from the index

Updates the value of a data entry
e Can you change the index key of a data entry?

Search and scan

* Point lookup: find the data entry (entries) of a search key

e Range scan: enumerate all the data entries in a range of search keys
* e.g.,adm_year € [2020,2021], adm_year > 2020, adm_year < 2015
* sometimes the search key is a subset of the index key

e Full index scan: enumerate all data entries in an index
* Might be useful for ordering/efficiency

e Other search operations:
e String prefix matching
e 2-D, 3-D, or higher dimensional range search

CSE462/562 (Fall 2024): Lecture 13

17

Index Types

* Tree and hash indexes are the two most common categories of indexes
* More details in the next 3-4 lectures
* Example: B-Tree and static hash index

CSE462/562 (Fall 2024): Lecture 13

18

Tree-based indexes

Internal
Pages \17 = \17

=2 A [4\ L4\ [g\
Leaf o o o «—> o o o D —— o o o > © ©o o
Pages
(Sorted by search key)

one index entry yet another index entry
A A \

Leaf pages contain data entries, and are chained (prev & next page ids)

)

|
.

:

|

- Internal pages have index entries; only used to direct searches

- Good for equality and range selection

- Results are ordered by index ke
CSE462/56

}I(Fall 2024): Lecture 13

An internal page

Example: B-Tree index

Data Entries < 17

Root\A
17

ta Entries >= 17

Note how data entries
in leaf level are sorted

Pointers to Actual

5 27 || 30
; ?:*/ ls*\ }“ 2 24.*/ T \T“
v Ty v v R v v v VvV

——— Data Pages (rid)

Heap File for the Data Records

e Technically, this is the B+-Tree index, not the original B-Tree

* Difference: B+-Tree only stores keys rather than data entries in internal nodes
e But most DBMS uses B+-Tree, but use the term B-Tree...

CSE462/562 (Fall 2024): Lecture 13

20

Hash-based indexes

* Good for equality selections.

* |Index is a collection of buckets.
e Bucket = primary page plus zero or more overflow pages.

 Buckets contain data entries.

* Hashing function h: h(r) = bucket in which (data entry for) record r belongs.
h looks at the index key fields of r.

* No need for “index entries” in this scheme.

CSE462/562 (Fall 2024): Lecture 13

21

Example: static hashing index

* Fixed number of primary pages = # of buckets (denoted as M)

* allocated sequentially; never de-allocated

* allocate overflow pages if needed

* h(k) % M = the bucket id for a data entry with index key k.

8*_

14%

5* — > o o o

0] 2+
h(key) mod M
7*
key :
M-1| 3*

+—> o o o

16*

Primary bucket pages Overflow pages

CSE462/562 (Fall 2024): Lecture 13

22

Clustered vs unclustered index

e Clustered index

 Anindex over a file such that the order of the data records is the same as, or “close to” that of the
index data entries

* A file can only be clustered on one index key
» Sorted file can be used for clustering, but may be expensive to maintain
* Can we use heap file? Yes, but with some tricks.

e Using Alternative 1 in a B+-tree implies clustered, but not vice-versa.
* aka clustered file

CSE462/562 (Fall 2024): Lecture 13

23

Clustered vs unclustered index

* Assume alternative 2 for data entries, and data records are stored in a heap file.
* To build clustered index
* first sort the heap file, with some free space on each block for future updates/inserts.
* The percentage of free space in the initial sort/append is called fill factor
* Overflow pages may be needed for inserts/updates.
* Thus, the order of data records is “close to”, if not not identical to, the sort order.

Index entries
CLUSTERED direct search for UNCLUSTERED
data entries

Data entries | | Data entries <= =
/A \ AN (Index File) AN R~ X
/4 \X»T Eatatie) /XN [NPT P
Data Records Data Records

CSE462/562 (Fall 2024): Lecture 13

Access cost of clustered vs unclustered index

» Cost of accessing data records through index varies greatly based on whether index is clustered!
* e.g.range scan with n matching data records in a B-Tree

e assuming we ignore the buffer pool’s effect
e clustered: H + [%] |/Os

e unclustered:

H = number
of levels

CLUSTERED

#

N\

Index entries

direct search for

data entries

B data entries
per leaf page

v

I\

Data entries

AN

UNCLUSTERED

/

Data entries

<—>

(Index File)

>

\

<>

on average//l

I\

M data records per

heap page on average

Data Records

AN
(Data file) //\

Data Records

CSE462/562 (Fall 2024): Lecture 13

X
N AN

25

Tradeoffs between clustered and unclustered indexes

 What are the tradeoffs?

* Clustered Pros
» Efficient for range searches for records: sequential access in a sorted file
* May be able to do some types of compression
* Locality benefits
* Clustered Cons
* Expensive to maintain (on the fly or sloppy with reorganization)
* Unclustered

* Pros: easy and efficient to maintain, allow multiple indexes
* Cons: expensive for range scans for records: 1 random IO for each matching record.

CSE462/562 (Fall 2024): Lecture 13

26

Primary, secondary and unique index

* Primary index: index key contains the primary key
e e.g., for student table, an index over (sid) is its primary index
e at most one per relation

* Unique index: index key contains a candidate key
* Primary index is a unique index, but not vice versa
* Can be clustered or unclustered.

* Secondary index (not well-defined but often used)
* It may have different meanings
* anindex that is not indexed over the primary key
* unclustered
e or both

CSE462/562 (Fall 2024): Lecture 13

27

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Revisit of the big picture of file organization
	Slide 3: Heap file
	Slide 4: Revisit of the big picture of file organization
	Slide 5: Access methods
	Slide 6: Cost Model for Analysis
	Slide 7: Cost of operations
	Slide 8: Cost of operations
	Slide 9: Access methods
	Slide 10: Columnar Storage
	Slide 11: Access methods
	Slide 12: Index
	Slide 13: Index
	Slide 14: Index classification
	Slide 15: Alternatives for the data entry bold italic k to the asterisk operator in index
	Slide 16: More on the alternatives of the data entries in index
	Slide 17: Index operations
	Slide 18: Index Types
	Slide 19: Tree-based indexes
	Slide 20: Example: B-Tree index
	Slide 21: Hash-based indexes
	Slide 22: Example: static hashing index
	Slide 23: Clustered vs unclustered index
	Slide 24: Clustered vs unclustered index
	Slide 25: Access cost of clustered vs unclustered index
	Slide 26: Tradeoffs between clustered and unclustered indexes
	Slide 27: Primary, secondary and unique index

