
CSE462/562: Database Systems (Fall 24)

Lecture 16: Index Scan and Cost Analysis

11/5/2024

Last updated: 10/9/2024 3:00 PM

Revisiting simple selection
• 𝜎𝑝𝑅

• Notations
• 𝑡𝑆 = seek time in I/O, 𝑡𝑇 = page transfer time in I/O

• Linear scan works with any predicate 𝑝 but has linear I/O cost
• 𝑐 = 𝑡𝑆 + 𝑁𝑡𝑇

• 1 seek to the start of the file and 𝑁 pages to read

• Can we do better for special predicate 𝑝 = 𝑥 ∈ 𝐿, 𝑅 if
• we have a B-tree index over x?

• and/or the file is sorted on x?

• What about more general predicate 𝑝?

CSE462/562 (Fall 2024): Lecture 16 2

Simple selection: index scan
• If the file has a B-Tree index 𝐼 over the search key,

• Basic idea:
1. Find the first qualifying data entry in the tree

2. Scan all the data entries and/or fetch the records as needed.

• Three alternatives of data entries:
• Alternative 1: the record itself (with its key 𝑘) – always clustered

• Alternative 2: <𝑘, record ID of a matching record>

• Alternative 3: <k, list of record IDs of matching records>

• For alternative 2 & 3, the index can be clustered or unclustered

• which can significantly impact the I/O efficiency of index scans

CSE462/562 (Fall 2024): Lecture 16 3

𝑇: # of matching records
𝐹: # of data entries per leaf page
N: # of pages with matching records

Data access cost using B-Tree
• Recall clustered vs. unclustered: if order of data records is the same as, or `close to’,

order of index data entries, then called clustered index.
• Cost of using B-Tree to access records varies a lot depending on whether it is clustered or not

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

CSE462/562 (Fall 2024): Lecture 16 4

Cost of range scan with clustered B-Tree index
• All records with key >= 24. Clustered index with alternative 2.

• 6 I/Os
• 2 random I/O
• 4 sequential I/O if heap file is laid out sequentially

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

CSE462/562 (Fall 2024): Lecture 16 5

Cost of range scan with unclustered B-Tree index
• All records with key >= 24. Unclustered index with alternative 2.

• 10 I/Os

• All random I/Os

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

CSE462/562 (Fall 2024): Lecture 16 6

Cost of range scan with clustered B-Tree file
• All records with key >= 24. Clustered index with alternative 1.

• 6 I/Os
• 3 Random I/O
• 3 Sequential I/O if the leaf level is sequential in the file

Root

3934

24* 27* 29* 33* 34* 38* 39*

207 243

……

16 29

CSE462/562 (Fall 2024): Lecture 16 7

Recap on cost model
• Cost = NT × 𝑡𝑇 + 𝑆 × 𝑡𝑆

• 𝑁𝑇: number of pages read/written; 𝑆: number of random I/O

• Assumptions
• Ignoring the buffer effect for random pages

• Do consider the private workspace size 𝑀 for the operators
• Omitting the cost of transferring output to the user/disk

• Common to any equivalent plan

• Notations: for relation 𝑅
• 𝑇𝑅: number of records, 𝑁𝑅: number of pages in its heap file, 𝐵𝑅: (average) number of tuples per page
• ℎ𝐼: height of a B-tree index 𝐼 over the file
• 𝑀: private workspace size in pages

• Running example
• 𝑡𝑆 = 4 𝑚𝑠, 𝑡𝑇 = 0.1 𝑚𝑠, 4000-byte page
• Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

• 50 bytes/tuple, 𝐵𝑅 = 80, 𝑇𝑅 = 40,000, 𝑁𝑅 = 500
• Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

• 20 bytes/tuple, 𝐵𝐸 = 200, 𝑇𝐸 = 200,000, 𝑁𝐸 = 1000

CSE462/562 (Fall 2024): Lecture 10 8

HDD* SSD†

𝑡𝑇 (ms) 0.1 0.01

𝑡𝑆 (ms) 4 0.09

Typical 𝑡𝑇 and 𝑇𝑆

Simple selection: index scan
• If the file has a B-Tree index 𝐼 over the search key, assuming alternative 2 for data entries

• cost varies depending on whether it’s clustered

• Assuming selectivity is 𝑠 = 0.1, the number of matching records is 𝑇 and the number of
pages with matching records is 𝑁, assume ℎ = 3
cost =
• ℎ𝐼 × 𝑡𝑇 + 𝑡𝑆 for finding qualifying data entries +

• cost for retrieving the heap records

• clustered: tS + 𝑁 × 𝑡𝑇 ≈ 𝑡𝑆 + 𝑠𝑁𝑅 × 𝑡𝑇 (total = 12.3 + 9 = 21.3 𝑚𝑠)

• unclustered:
𝑇

𝐹
− 1 × 𝑡𝑇 + 𝑇 × 𝑡𝑇 + 𝑡𝑆

 =
𝑠𝑇𝑅

𝐹
− 1 × 𝑡𝑇 + 𝑠𝑇𝑅 × 𝑡𝑇 + 𝑡𝑆 (total = 12.3 + 16401.3 = 16413.3 𝑚𝑠)

• can we do better?

CSE462/562 (Fall 2024): Lecture 16 9

𝑇: # of matching records
𝐹: # of data entries per leaf page
N: # of pages with matching records

Trade-offs with B-Tree
• Clustered B-Tree

• One per table
• Both are good for large range scans, small range scans and point lookups
• Alternative 2/3 (clustered index)

• A bit easier to maintain – can be lax on the heap record order (“close to” the data entry order)
• Alternative 1 (clustered file)

• Harder to maintain – strictly clustered
• Need to reorganize the leaf level to make sure they are sequential

• Save space on data entries (no duplication of keys)
• Might have larger tree height

• Unclustered B-Tree
• Usually alternative 2/3
• Easiest to maintain
• Not very efficient when range scan covers too many records

• Rule of thumb: Scan no more than a tiny fraction of rows
 e.g., 0.01% on 7200 rpm HDD, 0.1% on consumer-level Nand SSD
(empirical value, it may vary depending on your DBMS and storage device)

CSE462/562 (Fall 2024): Lecture 16 10

Simple selection: bitmap index scan
• Refinement for unclustered index scan: bitmap index scan

1. Initialize a bitmap with one bit for each page in the file (usually fits in mem even for a large file)

2. Find the first qualifying data entry

3. Scan all the data entries and mark all the unique pages with the matching records in the bitmap

4. Scan all the pages with bit 1 (linear scan on page)

• Alternative: collect all RID in memory in step 3, sort and fetch tuples in RID order
• more expensive unless RIDs fit in memory

• might make sense for faster storage (thus CPU cost matters)

CSE462/562 (Fall 2024): Lecture 16 11

Data entries

Heap file

0 0 0 1 1 1 0Bitmap

Simple selection: bitmap index scan
• Cost of bitmap index scan =

• (tree search) ℎ × 𝑡𝑆 + 𝑡𝑇 +

• (scan of data entries)
𝑇

𝐹
− 1 × 𝑡𝑇 + (assuming leaf level is consecutive from bulk loading)

• (scan of data pages) 𝑁 × 𝑡𝑆 + 𝑡𝑇 (when N is small and thus most involve random seeks) or
 𝑡𝑆 + 𝑁 × 𝑡𝑇 (when N is close to 𝑁𝑅 and it’s close to sequential scan)

• Example 1 (large selectivity): 𝑠 = 0.9, F = 300, T = sTR = 36000, N = 500 =>
 cost = 4.1 × 3 + 0.1 × ⌈

36000

300
⌉ − 1 + 4 + 0.1 × 500 = 78.2 𝑚𝑠 (unclustered)

 vs 4.1 × 3 + 4 + 0.1 × ⌈0.9 × 500⌉ = 61.3 𝑚𝑠 (clustered)

• Example 2 (moderate selectivity): 𝑠 = 0.1, 𝐹 = 300, 𝑇 = 𝑠𝑇𝑅 = 4000, E N ≈ 500 (think: why?)
 cost = 4.1 × 3 + 0.1 × ⌈

4000

300
⌉ − 1 + 4 + 0.1 × 500 = 67.6 𝑚𝑠 (unclustered)

 vs 4.1 × 3 + 4 + 0.1 × 0.1 × 500 = 21.3 𝑚𝑠 (clustered)

• Example 3 (small selectivity): 𝑠 = 0.0001, 𝐹 = 300, 𝑇 = 𝑠𝑇𝑅 = 4, 𝑁 = 4
 cost = 4.1 × 3 + 0.1 × ⌈

4

300
⌉ − 1 + 4.1 × 4 = 28.7 𝑚𝑠 (unclustered)

 vs 4.1 × 3 + 4 + 0.1 × 0.0001 × 500 = 16.4 𝑚𝑠 (clustered)

• Trade-offs:
• Only slightly more expensive than a linear scan when selectivity is close to 1

• Only slightly more expensive than a regular secondary index scan when selectivity is close to 0 (<< linear scan)

• Only works poorly when the selectivity is moderate -- better off with clustered index

• To show that, let 𝐼𝑖 = 1 if page i has any matching record (an indicator variable) and assume uniform distribution in search key

• 𝐸 𝑁 = σ1≤𝑖≤𝑁𝑅
𝐸 𝐼𝑖 = σ1≤𝑖≤𝑁𝑅

Pr 𝐼𝑖 = 1 = 𝑁𝑅 1 − 1 − 𝑠 𝐵𝑅

CSE462/562 (Fall 2024): Lecture 16 12

𝑇: # of matching records
𝐹: # of data entries per leaf page
N: # of pages with matching records

Analysis of B-Tree storage cost
• Suppose the usable page size is 𝑃 (bytes), each record is 𝑟 (bytes), the index key is 𝑘

bytes, record ID or page number is 𝑞 bytes, and 𝑁 records in total in the heap file.

• Assume we use alternative 2 for the data entries.

• Bottom-up analysis:
• Number of pages in the heap file: 𝑀 = ⌈

𝑁

⌊𝑃/𝑟⌋
⌉.

• Number of data entries: N (one per record)
• Size of a data entry: 𝑘 + 𝑞 bytes (without considering alignments)
• Number of pages in leaf level:

• 𝑁′ = ⌈
𝑁

⌊𝑃/(𝑘+𝑞)⌋
⌉

• If the average leaf page utilization ratio is 𝑢:

𝑁′ = ⌈
𝑁

⌊𝑃 ∗ 𝑢/(𝑘 + 𝑞)⌋
⌉

• Let 𝐵 be the number of data entries per leaf page

• 𝐵 = 𝑃 ∗ 𝑢/(𝑘 + 𝑞)

CSE462/562 (Fall 2024): Lecture 16 13

Analysis of B-Tree storage cost
• Internal levels:

• Fan-out/number of index entries per page

𝑓 =
𝑃×𝑢−𝑞

𝑘+𝑞
+ 1 (u is the average utilization ratio: [0.5, 1))

• Number of entries in the index level right above the leaf level: N’ (one entry per leaf-level page)

• Number of pages required in this level: 𝑁′/𝑓

• Number of entries in the level above: 𝑁′/𝑓

• Number of pages in the level above: 𝑁′/𝑓2

• Recursively pages in each level:

• N’, N’/f, N’/f2 , N’/f3 …. 1=N’/fh-1

• So ℎ = log𝑓 𝑁′ + 1 = log𝑓⌈
𝑁

𝐵
⌉ + 1

• total number of internal pages 1 + 𝑓 + … + 𝑓ℎ−1 =
𝑓ℎ−1

𝑓−1
= 𝑂 𝑁′ = 𝑂 𝑁/𝐵

• Total number of pages in a B-Tree: 𝑂 𝑁′ = 𝑂(
𝑁

𝐵
)

fill factor: the default utilization ratio
when bulk loading the tree

CSE462/562 (Fall 2024): Lecture 16 14

Exercises: cost analysis of B-tree index scans
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576

• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead

• record id and page id are both 8 bytes

• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.

• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• Heap file:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:

• Cost of finding all records with 𝑥 = 1:

• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Fall 2024): Lecture 16 15

Exercises: cost analysis of B-tree index scans
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦), alt. 1:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Fall 2024): Lecture 16 16

Exercises: cost analysis of B-tree index scans
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦), alt. 2 and clustered:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Fall 2024): Lecture 16 17

Exercises: cost analysis of B-tree index scans
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦), alt. 2 and unclustered:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Fall 2024): Lecture 16 18

Exercises: cost analysis of B-tree index scans
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦, 𝑥), alt. 2 and clustered:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Fall 2024): Lecture 16 19

Exercises: cost analysis of B-tree index scans
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦, 𝑥), alt. 2 and unclustered:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Fall 2024): Lecture 16 20

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Revisiting simple selection
	Slide 3: Simple selection: index scan
	Slide 4: Data access cost using B-Tree
	Slide 5: Cost of range scan with clustered B-Tree index
	Slide 6: Cost of range scan with unclustered B-Tree index
	Slide 7: Cost of range scan with clustered B-Tree file
	Slide 8: Recap on cost model
	Slide 9: Simple selection: index scan
	Slide 10: Trade-offs with B-Tree
	Slide 11: Simple selection: bitmap index scan
	Slide 12: Simple selection: bitmap index scan
	Slide 13: Analysis of B-Tree storage cost
	Slide 14: Analysis of B-Tree storage cost
	Slide 15: Exercises: cost analysis of B-tree index scans
	Slide 16: Exercises: cost analysis of B-tree index scans
	Slide 17: Exercises: cost analysis of B-tree index scans
	Slide 18: Exercises: cost analysis of B-tree index scans
	Slide 19: Exercises: cost analysis of B-tree index scans
	Slide 20: Exercises: cost analysis of B-tree index scans

