
CSE462/562: Database Systems (Fall 24)

Lecture 17: Transaction, Pessimistic 
Concurrency Control & Crash Recovery

11/7/2024

Last updated: 10/9/2024 3:00 PM



What is a transaction?

•  A transaction is a sequence of one or more SQL operations treated as a unit
• START/BEGIN [TRANSACTION] to start a new transaction

• COMMIT: make all the changes by the current transaction permanent and visible

• ROLLBACK/ABORT: revert all the changes by the current transaction

CSE462/562 (Fall 2024): Lecture 17

Transaction:
BEGIN;

INSERT INTO A VALUES (…)

SELECT * from A;

DELETE FROM A WHERE …;

COMMIT;

2



Recap on Transactions & Concurrency
• ACID properties

• Atomicity
• A Xact’s effect is always applied as a whole, or not at all

• Consistency
• Run by itself must leave the DB in a consistent state (no IC violations)

• Isolation
• “protected” from the effects of concurrently scheduled other transactions
• Most stringent isolation level: serializable

• Operations may be interleaved, but execution must be equivalent to some sequential (serial) order 
of all transactions

• Durability
• If a transaction has successfully completed, its effects should persist even if the system crashes before 

all its changes are reflected on disk.

• Issues:  Effect of interleaving transactions, and crashes, may result violate ACID.
• Needs concurrency control & crash recovery

CSE462/562 (Fall 2024): Lecture 17 3



Scheduling Transactions
• Serial schedule: Schedule that does not interleave the actions of different transactions.

• Equivalent schedules:  For any database state, the effect of executing the first schedule is 
identical to the effect of executing the second schedule.

• Serializable schedule:  A schedule that is equivalent to some serial execution of the 
transactions.

     (Note: If each transaction preserves consistency, every serializable schedule preserves 
consistency. )

• When we discuss schedules, we only consider reads/writes/commit/abort
• Ignores computation

• Two forms of (restricted) serializability
• conflict serializable
• view serializability

CSE462/562 (Fall 2024): Lecture 17 4



Anomalies with interleaved execution
• Dirty reads (WR conflict)

T1: R(A), W(A),                             R(B), W(B), Abort
T2:   R(A), W(A), C

• Unrepeatable reads (RW conflict)

T1: R(A),           R(A), W(A), C
T2:  R(A), W(A), C

CSE462/562 (Fall 2024): Lecture 17 5



Anomalies with interleaved execution
• Phantom read (RW conflict w/ predicate)

T1: R(t: P(t))                              R(t: P(t)) C
T2:         W(A’ , s.t. A′ ∈ 𝑷) C

• Dirty write (WW conflict)

T1: W(A)                  W(B) C
T2:  W(A) W(B) C

CSE462/562 (Fall 2024): Lecture 17 6



Conflict serializability 
• Two operations of two different transactions conflict if

• Performed on the same object

• At least one of them is a write

T1: R1 (A), 𝑊1(A),                𝑅1(B), 𝑊1(B)
T2:   𝑅2(A), 𝑊2(A)

Conflicts:
      𝑅1 𝐴 , 𝑊2 𝐴
      𝑊1 𝐴 , 𝑅2 𝐴
 𝑊1 𝐴 , 𝑊2 𝐴
 

• We can swap two adjacent nonconflicting operations without changing the final state

T1: R1 (A), 𝑊1(A), 𝑅1(B), 𝑊1(B)
T2:                           𝑅2(A), 𝑊2(A)

• Two schedules are conflict equivalent if one can be transformed into the other through swaps
• Involve the same actions of the same transactions in the same order

• Every pair of conflicting operations are ordered the same way

• Schedule S is said to be conflict serializable if it is conflict equivalent to some serial schedule S’

CSE462/562 (Fall 2024): Lecture 17 7



View serializability
• View serializability is based on view equivalence

• Schedules S1 and S2 are view equivalent if:

• If Ti reads initial value of A in S1, then Ti also reads initial value of A in S2

• If Ti reads value of A written by Tj in S1, then Ti also reads value of A written by Tj in S2

• If Ti writes final value of A in S1, then Ti also writes final value of A in S2

T1: R(A)   W(A)
T2:    W(A)
T3:               W(A)

T1: R(A),W(A)
T2:               W(A)
T3:               W(A)

View equivalent but not conflict equivalent

• View serializability is “weaker” than conflict serializability!
• Every conflict serializable schedule is view serializable, but not vice versa!
• I.e. admits more serializable schedules

CSE462/562 (Fall 2024): Lecture 17 8



Determining conflict serializability
• Dependency graph

• One node per Xact
• edge from Ti to Tj if

• an operation of Ti conflicts with an operation of Tj and
• Ti’s operation appears earlier in the schedule than the conflicting operation of Tj.

• Theorem: Schedule is conflict serializable if and only if its dependency graph is acyclic

T1:  R(A), W(A),                         R(B), W(B)
T2:     R(A), W(A), R(B), W(B)

T1 T2
A

B

Dependency graph

CSE462/562 (Fall 2024): Lecture 17 9



How to enforce conflict serializability?
• Two operations of two different transactions conflict if

• Performed on the same object

• At least one of them is a write

T1: R1 (A), 𝑊1(A),                𝑅1(B), 𝑊1(B)
T2:   𝑅2(A), 𝑊2(A)

Conflicts:
      𝑅1 𝐴 , 𝑊2 𝐴
      𝑊1 𝐴 , 𝑅2 𝐴
 𝑊1 𝐴 , 𝑊2 𝐴
 

• We can swap two adjacent nonconflicting operations without changing the final state

T1: R1 (A), 𝑊1(A), 𝑅1(B), 𝑊1(B)
T2:                           𝑅2(A), 𝑊2(A)

• Two schedules are conflict equivalent if one can be transformed into the other through swaps
• Involve the same actions of the same transactions in the same order

• Every pair of conflicting operations are ordered the same way

• Schedule S is said to be conflict serializable if it is conflict equivalent to some serial schedule S’

CSE462/562 (Fall 2024): Lecture 17 10



Pessimistic Concurrency Control
• Strict Two-phase Locking (Strict 2PL) Protocol:

• Each Xact must obtain a S (shared) lock on object before reading, and an X (exclusive) lock on object 
before writing.

• All locks held by a transaction are released when the transaction completes

• (Non-strict) 2PL Variant: Release locks anytime, but cannot acquire locks after releasing any lock.

•  If an Xact holds an X lock on an object, no other Xact can get a lock (S or X) on that object.

• Strict 2PL allows only conflict serializable schedules.
• Additionally, it simplifies transaction aborts

• (Non-strict) 2PL also allows only serializable schedules, but involves more complex abort processing

S X

S  –

X – –

Lock
Compatibility
Matrix

CSE462/562 (Fall 2024): Lecture 17 11



Example: strict 2-PL

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: A = A - 100, B = B + 100

S(A)

R(A)

X(A)

W(A)

request S(A) -- blocked

S(B)

R(B)

X(B)

W(B)

S(A)

R(A)

X(A)

W(A)

Commit
Release A & B

……

Lock 
upgrade

CSE462/562 (Fall 2024): Lecture 17 12



Example: non-strict 2-PL

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: A = A - 100, B = B + 100

X(A)

X(B)

R(A)

W(A)
request S(A) -- blocked

R(B)

W(B)

S(A)

R(A)

X(A)

W(A)

Commit

Release A

……

Release B

No new locks/lock 
upgrades at this point.

CSE462/562 (Fall 2024): Lecture 17 13



Example: non-strict 2-PL

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: A = A - 100, B = B + 100

X(A)

X(B)

R(A)

W(A)
request S(A) -- blocked

R(B)
W(B)

S(A)

R(A)

X(A)

W(A)

abort

Release A

abort

Release B

susceptible to cascading aborts!

Usually avoided in DBMS to avoid 
wasted work.

CSE462/562 (Fall 2024): Lecture 17 14



Strict 2-PL vs non-strict 2-PL

CSE462/562 (Fall 2024): Lecture 17 15



Deadlocks

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)

S(B) -- blocked

S(A) -- blocked

Deadlock!

• Create a waits-for graph:
• Nodes are transactions
• There is an edge from Ti to Tj if Ti is waiting for 

Tj to release a lock
• Deadline  cycle in the wait-for graph
• Two ways to handle deadlocks

• Deadlock prevention
• Deadlock detection

T1 T2

CSE462/562 (Fall 2024): Lecture 17 16



Deadlock prevention
• Idea: make sure wait-for graph is acyclic

• Intuition: only allow edges to form in one of the following two directions:

• either from older transactions to younger transactions (wait-die)

• or only from younger to older (wound-wait)

• Aborting a transaction prevents forming wait-for edges

• Assign priorities based on start timestamps.
Assume Ti wants a lock that Tj holds. Two policies are possible:

• Wait-Die: If Ti has lower timestamp (i.e., older) than Tj, Ti waits; otherwise Ti aborts

• No preemption

• Wound-Wait: If Ti has lower timestamp (i.e., older), Tj aborts (preempted); otherwise Ti waits

• Preemptive scheduling

• If a transaction re-starts, make sure it gets its original timestamp
• Why? (to avoid starvation)

CSE462/562 (Fall 2024): Lecture 17 17



Deadlock prevention: Wait-Die

CSE462/562 (Fall 2024): Lecture 17

T1, ts = 1 T2, ts = 2

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)
S(B) -- blocked

A

B

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

T1 T2

Scenario 1: T1 requests 𝑆 𝐵  before 𝑇2 requests 𝑆 𝐴

S(A) -- abort
S(B) granted
R(B)
X(B)
W(B)
commit

(retry with ts = 2…)

Wait-Die: If Ti has lower timestamp (i.e., older) than Tj, Ti 
waits; otherwise Ti aborts

18



Deadlock prevention: Wait-Die

CSE462/562 (Fall 2024): Lecture 17

T1, ts = 1 T2, ts = 2

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)

A

B

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

T1 T2

Scenario 2: T1 requests 𝑆 𝐵  after 𝑇2 requests 𝑆 𝐴
S(A) -- abort

S(B) granted
R(B)
X(B)
W(B)
commit

(retry with ts = 2…)

Wait-Die: If Ti has lower timestamp (i.e., older) than Tj, Ti 
waits; otherwise Ti aborts

19



Deadlock prevention: Wound-Wait

CSE462/562 (Fall 2024): Lecture 17

T1, ts = 1 T2, ts = 2

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)
S(B)

A

B

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

T1 T2

Scenario 1: T1 requests 𝑆 𝐵  before 𝑇2 requests 𝑆 𝐴 abort (preempted)

R(B)
X(B)
W(B)
commit

(retry with ts = 2…)

Wound-Wait: If Ti has lower timestamp (i.e., older), Tj 
aborts (preempted); otherwise Ti waits

20



Deadlock prevention: Wound-Wait

CSE462/562 (Fall 2024): Lecture 17

T1, ts = 1 T2, ts = 2

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)

S(B)

A

B

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

T1 T2

Scenario 2: T1 requests 𝑆 𝐵  after 𝑇2 requests 𝑆 𝐴 S(A) -- blocked

R(B)
X(B)
W(B)
commit

(retry with ts = 2…)

Wound-Wait: If Ti has lower timestamp (i.e., older), Tj 
aborts (preempted); otherwise Ti waits

abort (preempted)

wait-for edge from T2 to T1 disappears after T2 is preempted
21



Deadlock detection
• Explicitly create a waits-for graph:

• Nodes are transactions

• There is an edge from Ti to Tj if Ti is waiting for Tj to release a lock

• Periodically check for cycles in the waits-for graph
• If there’s a cycle, abort at least one transaction in the cycle

T1:  S(A), S(D),        S(B)
T2:                  X(B)              X(C)
T3:        S(D), S(C),      X(A)
T4:             X(B)

T1 T2

T4 T3

T1 T2

T4 T3

CSE462/562 (Fall 2024): Lecture 17 22



Deadlock detection (cont’d)
• In practice, most systems do detection

• Experiments show that most waits-for cycles are length 2 or 3

• Hence, only a few transactions actually need to be aborted

• Implementations can vary

• Can construct the graph and periodically look for cycles
• When is the graph created ? 

• Which process checks for cycles ? 

• Can also use a “time-out” scheme

• if T has been waiting on a lock for a long time, assume it’s in a deadlock and abort

CSE462/562 (Fall 2024): Lecture 17 23



What we have glossed over
• What should we lock?

• We assume tuples here, but that can be expensive!

• If we do table locks, that’s too conservative

• Multi-granularity locking

• How to deal with phantoms?

• Locking in indexes

• don’t want to lock a B-tree root for a whole transaction!

• more fine-grained concurrency control in indexes

• CC w/out locking (we’ll omit it in this course)

• “optimistic” concurrency control

• “timestamp” and multi-version concurrency control

• locking usually better, though

CSE462/562 (Fall 2024): Lecture 17 24



Multi-granularity locks
• Hard to decide what granularity to lock (tuples vs. pages vs. tables).

• Shouldn’t have to make same decision for all transactions!

• Data “containers” are nested: 

Tuples

Tables

Pages

Database

contains

CSE462/562 (Fall 2024): Lecture 17 25



Solution: new lock modes and protocols
• Allow Xacts to lock at each level, but with a special protocol using new “intention” locks:

• Still need S and X locks, but before locking an item,  Xact must have proper intension 
locks on all its ancestors in the granularity hierarchy.

IS – Intent to get S lock(s) at finer granularity.

IX – Intent to get X lock(s) at finer granularity.

SIX mode: Like S & IX at the same time. Why 
useful?

IS IX SIX

IS

IX

SIX







 



S X

S

X





CSE462/562 (Fall 2024): Lecture 17 26



Example: 2-level hierarchy
• T1 scans R, and updates a few tuples:

• T1 gets an SIX lock on R, then get X lock on tuples that are updated.

• T2 uses an index to read only part of R:

• T2 gets an IS lock on R, and repeatedly gets an S lock on tuples of R.

• T3 reads all of R:

• T3 gets an S lock on R. 

• OR, T3 could behave like T2; can use lock escalation to decide which.

• Lock escalation 

• Dynamically asks for coarser-grained locks when too many 

      low level locks acquired

IS IX SIX

IS

IX

SIX







 



S X

S

X





Tuples

Tables

CSE462/562 (Fall 2024): Lecture 17 27



Dynamic Databases – The “Phantom” Problem
• If the DB is not a fixed collection of objects, even Strict 2PL (on individual items) will not assure serializability:

• Consider T1 – “Find the highest GPA among students of each age”

• T1 locks all pages containing sailor records with age = 20

• and finds the highest GPA (say, GPA = 3.7).

• Next, T2 inserts a new student; GPA = 4.0, age = 20.

• T2 also deletes student with the highest GPA (say 3.8) among those of age = 21, and commits.

• T1 now locks all pages containing student records with age = 21, and finds highest GPA (say, GPA = 3.6).

• No serial execution could lead to T1’s result!

CSE462/562 (Fall 2024): Lecture 17 28



The problem
• T1 implicitly assumes that it has locked the set of all student records with age = 20.

• Assumption only holds if no student records are added while T1 is executing!

• Need some mechanism to enforce this assumption.  (Index locking and predicate locking.)

• Example shows that conflict serializability guarantees serializability only if the set of 
objects is fixed!
• e.g. table locks

• Solution: predicate locking

CSE462/562 (Fall 2024): Lecture 17 29



Predicate locking
• Grant lock on all records that satisfy some logical predicate,  e.g. age > 2*salary.

• Index locking is a special case of predicate locking for which an index supports efficient 
implementation of the predicate lock.
• What is the predicate in the sailor example?

• General predicate locking has a lot of locking overhead.
• too expensive!

CSE462/562 (Fall 2024): Lecture 17 30



Instead of predicate locking
• Full table scans lock entire tables

• Range lookups do “next-key” & gap locking
• physical stand-in for a logical range!

2* 3* 14* 16*

135

7*5* 8*

S

scan: x > 4

locks 5* and the gap before it (3, 5)

At this point,

insert 4: blocked
insert 10? 

CSE462/562 (Fall 2024): Lecture 17 31



Lock management
• Lock and unlock requests are handled by the lock manager

• Lock table: a hash table over lock table entries
• for various resources, e.g., records, gaps, pages, tables, …

• Lock table entry:

• Number of transactions currently holding a lock

• Type of lock held (S, X, IS, IX, SIX)

• Pointer to queue of lock requests

• Locking and unlocking have to be atomic operations

• requires latches (e.g. reader-writer locks/semaphores), which ensure that the process is not 
interrupted while managing lock table entries

• Lock upgrade: transaction that holds a shared lock can be upgraded to hold an exclusive lock

• Can cause deadlock problems

• Deadlock prevention/detection

CSE462/562 (Fall 2024): Lecture 17 32



Locks vs Latches
• What’s common ?

• Both used to synchronize concurrent tasks

• What’s different ?
• Locks are used for logical consistency
• Latches are used for physical consistency

• Why treat ‘em differently ?
• Latches are short-duration lower-level locks that protects critical sections in the code

• depends on DBMS developer to prevent deadlocks
• Locks protects data/resources, much longer duration

• need deadlock prevention/detection, aborting transactions using priorities
• more lock modes, hierarchical

• Where are latches used ?
• In a lock manager !
• In a shared memory buffer manager
• In a B+ Tree index
• In a log/transaction/recovery manager

CSE462/562 (Fall 2024): Lecture 17 33



Locks vs Latches

Latches Locks

Ownership Processes Transactions

Duration Very short Long (Xact duration)

Deadlocks No detection - code carefully ! Checked for deadlocks

Overhead Cheap - 10s of instructions 
(latch is directly addressable)

Costly - 100s of instructions
(have to search for lock)

Modes S, X S, X, IS, IX, SIX

Granularity Flat - no hierarchy Hierarchical

CSE462/562 (Fall 2024): Lecture 17 34



Recap on Transactions & Concurrency
• Atomicity

• A Xact’s effect is always applied as a whole, or not at all

• Consistency
• Run by itself must leave the DB in a consistent state (no IC violations)

• Isolation
• “protected” from the effects of concurrently scheduled other transactions

• Durability
• If a transaction has successfully completed, its effects should persist even if the system crashes before 

all its changes are reflected on disk.

• Issues:  Effect of interleaving transactions, and crashes, may result violate ACID.
• Needs concurrency control & crash recovery

CSE462/562 (Fall 2024): Lecture 17 35



Motivation for crash recovery
• Atomicity: 

• Transactions may abort (“Rollback”).

• Durability:
• What if DBMS stops running?  (Causes?)

• Desired state after system restarts:
• T1 & T3 should be durable.

• T2, T4 & T5 should be aborted (effects not seen).

CSE462/562 (Fall 2024): Lecture 17

crash!
T1
T2
T3
T4
T5

Abort

Commit

Commit

36



Assumptions
• Concurrency control is in effect. 

• Strict 2-PL, in particular.

• Updates are happening “in place”.
• i.e. data are overwritten on (or deleted from) the actual pages.

• Can you think of a simple scheme (requiring no logging) to guarantee Atomicity & 
Durability?
• What happens during normal execution (what is the minimum lock granularity)?

• What happens when a transaction commits?

• What happens when a transaction aborts?

CSE462/562 (Fall 2024): Lecture 17 37



Buffer manager plays a key role
• Force policy – make sure that every update is on disk before commit.

– Provides durability without REDO logging.

– But, can cause poor performance.

• No Steal policy – don’t allow buffer-pool frames with uncommited updates to 
overwrite committed data on disk.

– Useful for ensuring atomicity without UNDO logging.

– But can cause poor performance.

CSE462/562 (Fall 2024): Lecture 17 38



Preferred buffer management policy: steal/no-force
• This combination is most complicated but allows for highest performance.

• NO FORCE: do not have to flush all dirty pages of a transaction to disk before it commits

• complicates Durability

• What if system crashes before a modified page written by a committed transaction makes it to disk?

• Write as little as possible, in a convenient place, at commit time, to support REDOing modifications.

• STEAL: allows buffer pool with uncommitted updates to overwrite committed data on disk

• complicates Atomicity

• What if the Xact that performed updates aborts?

• What if system crashes before Xact is finished?

• Must remember the old value of P (to support UNDOing the write to page P).

CSE462/562 (Fall 2024): Lecture 17 39



Buffer management policies

CSE462/562 (Fall 2024): Lecture 17

Force

No Force

No Steal Steal

No REDO

No UNDO UNDO

No REDO

UNDO
REDO

No UNDO
REDO

Force

No Force

No Steal Steal

Slowest

Fastest

Performance 
Implications

Logging/Recovery 
Implications

40



Basic Idea: Logging
• Record REDO and UNDO information, for every update, in a log.

• Sequential writes to log (put it on a separate disk).

• Minimal info (diff) written to log, so multiple updates fit in a single log page.

• Log: An ordered list of REDO/UNDO actions
• Log record contains: 

<XID, pageID, offset, length, old data, new data> 
• and additional control info (which we’ll see soon).

CSE462/562 (Fall 2024): Lecture 17 41



Write-Ahead Logging (WAL)
• The Write-Ahead Logging Protocol:

 Must flush the log record for an update before the corresponding data page gets to disk.

 Must flush all log records for a Xact before commit

• alternatively,. transaction is not considered as committed until all of its log records including its 
“commit” record are on the stable log.

• #1 (with UNDO info) helps provide Atomicity.

• #2 (with REDO info) helps provide Durability.

• This allows us to employ Steal/No-Force policy

• Exactly how is logging (and recovery) done?
• We’ll look at the ARIES algorithms.

• Algorithms for Recovery and Isolation Exploiting Semantics

CSE462/562 (Fall 2024): Lecture 17 42



WAL & the log

• Each log record has a unique Log Sequence Number (LSN). 
• LSNs are monotonically increasing.

• Each data page contains a pageLSN.
• The LSN of the most recent log record for an update to that page.

• System keeps track of flushedLSN.
• The max LSN flushed so far.

• WAL:  Before page i is flushed to disk, the log must satisfy:

pageLSNi  flushedLSN

CSE462/562 (Fall 2024): Lecture 17

LSNs pageLSNs

RAM

flushedLSN

DB

pageLSN

Log records
flushed to disk

“Log tail”
  in RAM

flushedLSN

43



Log Records
prevLSN is the LSN of the previous log record 

written by this Xact (so records of an Xact 
form a linked list backwards in time)

Possible log record types:

• Update

• Checkpoint (for log maintenance)

• Compensation Log Records (CLRs) 
• for UNDO actions

• Commit/Abort

• End (indicates end of commit/abort)

CSE462/562 (Fall 2024): Lecture 17

LSN

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecord fields:

update
records
only

44



Other logging-related state
• Two -in-memory tables

• Transaction Table
• One entry per currently active Xact.

• entry removed when Xact commits or aborts

• Contains XID, status (running/committing/aborting), and lastLSN (most recent LSN written by Xact).

• Dirty Page Table:
• One entry per dirty page currently in buffer pool.

• Contains recLSN -- the LSN of the log record which first caused the page to be dirty.

• If a dirty page is flushed to disk, it is removed from dirty page table

CSE462/562 (Fall 2024): Lecture 17 45



The big picture: what’s stored and where

CSE462/562 (Fall 2024): Lecture 17

DB

Data pages
 each

 with a

 pageLSN

Xact Table
 lastLSN

 status

Dirty Page Table
 recLSN

flushedLSN

RAM

LSN

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecords

LOG

Master record

46



Normal execution of an Xact
• Series of reads & writes, followed by commit or abort.

• We will assume that disk write is atomic.

• In practice, additional details to deal with non-atomic writes.

• Strict 2-PL. 

• STEAL, NO-FORCE buffer management, with Write-Ahead Logging.

CSE462/562 (Fall 2024): Lecture 17 47



Transaction Commit
• Write commit record to log.

• All log records up to Xact’s commit record are flushed to disk.
• Guarantees that flushedLSN  lastLSN.

• Note that log flushes are sequential, synchronous writes to disk.

• Many log records per log page.

• Write an end record to log (no need to flush immediately)

• Commit() returns.

• When does a transaction becomes durable in the database?
• When its commit log record is flushed to disk, even if there are still dirty pages in bufmgr.

CSE462/562 (Fall 2024): Lecture 17 48



Simple transaction abort
• For now, consider an explicit abort of a Xact.

• No crash involved.

• First, set the transaction state in the transaction table to aborting.
• Write an Abort log record before starting to rollback operations

• We want to “play back” the log in reverse order, UNDOing updates.

• Get lastLSN of Xact from Xact table.

• Can follow chain of log records backward via the prevLSN field.

• Write a “CLR” (compensation log record) for each undone operation.

• more details on next slide

• Once its finished, write a transaction end log record in the disk

• Q: do we need to wait for abort, CLRs and end record to be flushed?

CSE462/562 (Fall 2024): Lecture 17 49



Simple transaction abort  (cont’d)

• To perform UNDO, must have a lock on data!
• We still have the lock because of strict 2-PL.

• Before restoring old value of a page, write a CLR:
• Must continue logging during undo in case of crash
• CLR has one extra field: undonextLSN

• Points to the next LSN to undo (i.e. the prevLSN of the record we’re currently undoing).

• CLR contains REDO info
• CLRs is never undone 

• Undo needn’t be idempotent (>1 UNDO won’t happen)
• But they might be Redone when repeating history (=1 UNDO guaranteed)

• At end of all UNDOs, write an “end” log record.

CSE462/562 (Fall 2024): Lecture 17 50



Checkpointing
• Conceptually, we keep log around for all time.  Obviously this has performance issues…

• Periodically, the DBMS creates a checkpoint, in order to minimize the time taken to 
recover in the event of a system crash.  Write to log:
• begin_checkpoint record:  Indicates when chkpt began.

• end_checkpoint record:  Contains current Xact table and dirty page table.  This is a `fuzzy checkpoint’:

• Other Xacts continue to run; so these tables accurate only as of the time of the begin_checkpoint 
record.

• No attempt to force all dirty pages to disk; effectiveness of checkpoint limited by oldest unwritten 
change to a dirty page. 

• However, the more dirty page gets flushed, the shorter time will be needed in crash recovery

• Store LSN of most recent chkpt record in a safe place (master record).

CSE462/562 (Fall 2024): Lecture 17 51



Crash Recovery: Big Picture
Start from a checkpoint (found via master record).

Three phases.  Need to do:

– Analysis - Figure out which Xacts committed 
since checkpoint, which failed.

– REDO all actions.

(repeat history)

– UNDO effects of failed Xacts.

CSE462/562 (Fall 2024): Lecture 17

Oldest log rec. of 
Xact active at crash

Smallest recLSN in 
dirty page table after 
Analysis

Last chkpt

CRASH

A R U
52



Phase 1: the analysis phase
• Re-establish knowledge of state at checkpoint.

• via transaction table and dirty page table stored in the checkpoint

• Scan log forward from checkpoint.
• End record: Remove Xact from Xact table.

• All Other records: Add Xact to Xact table, set lastLSN=LSN, change Xact status on commit.

• also, for Update records: If page P not in Dirty Page Table, Add P to DPT, set its recLSN=LSN.

• At end of Analysis…
• transaction table says which xacts were active at time of crash.

• DPT says which dirty pages might not have made it to disk

CSE462/562 (Fall 2024): Lecture 17 53



Phase 2: the redo phase
• We Repeat History to reconstruct state at crash:

• Reapply all updates (including those of aborted Xacts), redo CLRs.

• Scan forward from log rec containing smallest recLSN in DPT.    Q: why start here?

• For each update log record or CLR  with a given LSN, REDO the action unless:  
• Affected page is not in the Dirty Page Table, or

• Affected page is in D.P.T., but has recLSN > LSN, or

• pageLSN (in DB)  LSN. (this last case requires I/O)

• To REDO an action:
• Reapply logged action.

• Set pageLSN to LSN.  No additional logging, no forcing!

CSE462/562 (Fall 2024): Lecture 17 54



Phase 3: the undo phase
ToUndo={lastLSNs of all Xacts in the Trans Table}

              i.e., last log entry of the aborted transactions

Repeat:
• Choose (and remove) largest LSN among ToUndo.

• If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Xact.
• If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo 
• Else this LSN is an update.  Undo the update, write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

CSE462/562 (Fall 2024): Lecture 17 55



Example of recovery

CSE462/562 (Fall 2024): Lecture 17

begin_checkpoint

 end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN         LOG

00

     05

     10

     20

     30

     40

     45

     50

     60

Xact Table

 lastLSN

 status

Dirty Page Table

 recLSN

flushedLSN

ToUndo

prevLSNs

RAM

56



Example: crash during recovery

CSE462/562 (Fall 2024): Lecture 17

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50

T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN         LOG
00,05

     10

     20

     30

     40

     45

     50

     60

     70

     80

     85

    

 90,95

Xact Table

 lastLSN

 status

Dirty Page Table

 recLSN

flushedLSN

ToUndo

undonextLSN
RAM

57



Additional crash issues
• What happens if system crashes during Analysis?  During REDO?

• How do you limit the amount of work in REDO?
• Flush asynchronously in the background.

• Watch “hot spots”!

• How do you limit the amount of work in UNDO?
• Avoid long-running Xacts.

• What about schema changes/disk space management?

CSE462/562 (Fall 2024): Lecture 17 58



Summary of logging/recovery
• Recovery Manager guarantees Atomicity & Durability.

• Use WAL to allow STEAL/NO-FORCE w/o sacrificing correctness.

• LSNs identify log records; linked into backwards chains per transaction (via prevLSN).

• pageLSN allows comparison of data page and log records.

• Checkpointing: A quick way to limit the amount of log to scan on recovery. 

• Recovery works in 3 phases:
• Analysis: Forward from checkpoint.

• Redo: Forward from oldest recLSN.

• Undo: Backward from end to first LSN of oldest Xact alive at crash.

• Upon Undo, write CLRs.

• Redo “repeats history”: Simplifies the logic!

CSE462/562 (Fall 2024): Lecture 17 59


	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: What is a transaction?
	Slide 3: Recap on Transactions & Concurrency
	Slide 4: Scheduling Transactions
	Slide 5: Anomalies with interleaved execution
	Slide 6: Anomalies with interleaved execution
	Slide 7: Conflict serializability 
	Slide 8: View serializability
	Slide 9: Determining conflict serializability
	Slide 10: How to enforce conflict serializability?
	Slide 11: Pessimistic Concurrency Control
	Slide 12: Example: strict 2-PL
	Slide 13: Example: non-strict 2-PL
	Slide 14: Example: non-strict 2-PL
	Slide 15: Strict 2-PL vs non-strict 2-PL
	Slide 16: Deadlocks
	Slide 17: Deadlock prevention
	Slide 18: Deadlock prevention: Wait-Die
	Slide 19: Deadlock prevention: Wait-Die
	Slide 20: Deadlock prevention: Wound-Wait
	Slide 21: Deadlock prevention: Wound-Wait
	Slide 22: Deadlock detection
	Slide 23: Deadlock detection (cont’d)
	Slide 24: What we have glossed over
	Slide 25: Multi-granularity locks
	Slide 26: Solution: new lock modes and protocols
	Slide 27: Example: 2-level hierarchy
	Slide 28: Dynamic Databases – The “Phantom” Problem
	Slide 29: The problem
	Slide 30: Predicate locking
	Slide 31: Instead of predicate locking
	Slide 32: Lock management
	Slide 33: Locks vs Latches
	Slide 34: Locks vs Latches
	Slide 35: Recap on Transactions & Concurrency
	Slide 36: Motivation for crash recovery
	Slide 37: Assumptions
	Slide 38: Buffer manager plays a key role
	Slide 39: Preferred buffer management policy: steal/no-force
	Slide 40: Buffer management policies
	Slide 41: Basic Idea: Logging
	Slide 42: Write-Ahead Logging (WAL)
	Slide 43: WAL & the log
	Slide 44: Log Records
	Slide 45: Other logging-related state
	Slide 46: The big picture: what’s stored and where
	Slide 47: Normal execution of an Xact
	Slide 48: Transaction Commit
	Slide 49: Simple transaction abort
	Slide 50: Simple transaction abort  (cont’d)
	Slide 51: Checkpointing
	Slide 52: Crash Recovery: Big Picture
	Slide 53: Phase 1: the analysis phase
	Slide 54: Phase 2: the redo phase
	Slide 55: Phase 3: the undo phase
	Slide 56: Example of recovery
	Slide 57: Example: crash during recovery
	Slide 58: Additional crash issues
	Slide 59: Summary of logging/recovery

