CSE462/562: Database Systems (Fall 24)

Lecture 17: Transaction, Pessimistic
Concurrency Control & Crash Recovery

11/7/2024

University at Buffalo

s Department of Computer Science
and Engineering
School of Engineering and Applied Sciences

Last updated: 10/9/2024 3:00 PM

What is a transaction?

Transaction:
BEGIN ;

INSERT INTO A VALUES (..)
SELECT * from A;

DELETE FROM A WHERE ..;
COMMIT;

« A transaction is a sequence of one or more SQL operations treated as a unit
 START/BEGIN [TRANSACTION] to start a new transaction
« COMMIT: make all the changes by the current transaction permanent and visible
* ROLLBACK/ABORT: revert all the changes by the current transaction

Recap on Transactions & Concurrency

* ACID properties

* Atomicity
* A Xact’s effect is always applied as a whole, or not at all

* Consistency
* Run by itself must leave the DB in a consistent state (no IC violations)

* [solation
» “protected” from the effects of concurrently scheduled other transactions
* Most stringent isolation level: serializable

* Operations may be interleaved, but execution must be equivalent to some sequential (serial) order
of all transactions

e Durability

 |f a transaction has successfully completed, its effects should persist even if the system crashes before
all its changes are reflected on disk.

 |ssues: Effect of interleaving transactions, and crashes, may result violate ACID.
* Needs concurrency control & crash recovery

CSE462/562 (Fall 2024): Lecture 17

Scheduling Transactions

e Serial schedule: Schedule that does not interleave the actions of different transactions.

* Fquivalent schedules: For any database state, the effect of executing the first schedule is
identical to the effect of executing the second schedule.

 Serializable schedule: A schedule that is equivalent to some serial execution of the
transactions.

(Note: If each transaction preserves consistency, every serializable schedule preserves
consistency.)

 When we discuss schedules, we only consider reads/writes/commit/abort
* |gnores computation

* Two forms of (restricted) serializability
e conflict serializable
* view serializability

CSE462/562 (Fall 2024): Lecture 17

Anomalies with interleaved execution

 Dirty reads (WR conflict)

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

* Unrepeatable reads (RW conflict)

T1: R(A), R(A), W(A), C

CSE462/562 (Fall 2024): Lecture 17

Anomalies with interleaved execution

* Phantom read (RW conflict w/ predicate)

T1: R(t: P(t)) R(t: P(t)) C
T2: W(A',st. A" € P)C

 Dirty write (WW conflict)

T1: W(A) W(B) C
T2: W(A) W(B) C

CSE462/562 (Fall 2024): Lecture 17

Conflict serializability

* Two operations of two different transactions conflict if

* Performed on the same object
e At least one of them is a write

Conflicts:
T1: Rl (A)I Wl(A)r Rl(B)I Wl(B) Rl((A))’ WZEA%
. Wi(A),R,(A
T2: R,(A), W, (A) WI(A),WZZ(A)

* We can swap two adjacent nonconflicting operations without changing the final state

T1: Rl (A), Wl(A)l R]_(B), Wl(B)
T2: R, (A), W, (A)

* Two schedules are conflict equivalent if one can be transformed into the other through swaps
* Involve the same actions of the same transactions in the same order
* Every pair of conflicting operations are ordered the same way

e Schedule S is said to be conflict serializable if it is conflict equivalent to some serial schedule S’

CSE462/562 (Fall 2024): Lecture 17

View serializability

* View serializability is based on view equivalence

e Schedules S1 and S2 are view equivalent if:

- If Ti reads initial value of A in S1, then Ti also reads initial value of A in S2
- If Ti reads value of A written by Tj in S1, then Ti also reads value of A written by Tj in S2
- |If Ti writes final value of A in S1, then Ti also writes final value of A in S2

T1: R(A) W(A) T1: R(A),W(A)
T2: W(A) T2: W(A)
T3: W(A) T3: W(A)

View equivalent but not conflict equivalent

View serializability is “weaker” than conflict serializability!
Every conflict serializable schedule is view serializable, but not vice versa!
l.e. admits more serializable schedules

CSE462/562 (Fall 2024): Lecture 17

Determining conflict serializability

* Dependency graph
* One node per Xact
* edgefrom Tito Tjif
* an operation of Ti conflicts with an operation of Tj and
* Ti’s operation appears earlier in the schedule than the conflicting operation of Tj.

 Theorem: Schedule is conflict serializable if and only if its dependency graph is acyclic

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
A
@ @ Dependency graph
B

CSE462/562 (Fall 2024): Lecture 17

How to enforce conflict serializability?

* Two operations of two different transactions conflict if

* Performed on the same object
e At least one of them is a write

Conflicts:
T1: Rl (A)I Wl(A)r Rl(B)I Wl(B) Rl((A))’ WZEA%
. Wi(A),R,(A
T2: R,(A), W, (A) WI(A),WZZ(A)

* We can swap two adjacent nonconflicting operations without changing the final state

T1: Rl (A), Wl(A)l R]_(B), Wl(B)
T2: R, (A), W, (A)

* Two schedules are conflict equivalent if one can be transformed into the other through swaps
* Involve the same actions of the same transactions in the same order
* Every pair of conflicting operations are ordered the same way

e Schedule S is said to be conflict serializable if it is conflict equivalent to some serial schedule S’

CSE462/562 (Fall 2024): Lecture 17 10

Pessimistic Concurrency Control

e Strict Two-phase Locking (Strict 2PL) Protocol:

- Each Xact must obtain a S (shared) lock on object before reading, and an X (exclusive) lock on object
before writing.

« All locks held by a transaction are released when the transaction completes
- (Non-strict) 2PL Variant: Release locks anytime, but cannot acquire locks after releasing any lock.
If an Xact holds an X lock on an object, no other Xact can get a lock (S or X) on that object.

* Strict 2PL allows only conflict serializable schedules.
* Additionally, it simplifies transaction aborts
* (Non-strict) 2PL also allows only serializable schedules, but involves more complex abort processing

S | X
Lock
Compatibility S \/ -
Matrix X |- |-

CSE462/562 (Fall 2024): Lecture 17

Example: strict 2-PL

A T1 T2
Lock SIA
B upgrade C R(A)
X(A)
W(A)
request S(A) -- blocked
T1: A=A+ 100, B = B - 100 S(B)
T2: A=A-100,B=B+100 R(B)
X(B)
W(B)
Commit
Release A & B
S(A)
R(A)
X(A)
W(A)

CSE462/562 (Fall 2024): Lecture 17

Example: non-strict 2-PL

A

B

T1: A=A+100,B=B-100
T2: A=A-100,B =B+ 100

No new locks/lock
upgrades at this point.

T1 T2
X(A)
X(B)
R(A)
W(A)
request S(A) -- blocked
Release A
S(A)
R(A)
X(A)
W(A)
R(B)
W(B)
Release B
Commit

CSE462/562 (Fall 2024): Lecture 17

13

Example: non-strict 2-PL

A

B

T1: A=A+100,B=B-100
T2: A=A-100,B =B+ 100

susceptible to cascading aborts!

Usually avoided in DBMS to avoid
wasted work.

T1 T2
X(A)
X(B)
R(A)
W(A)
request S(A) -- blocked
Release A
S(A)
R(A)
X(A)
W(A)
R(B)
W(B)
Release B
abort
abort

CSE462/562 (Fall 2024): Lecture 17

14

Strict 2-PL vs non-strict 2-PL

4 locks
growing l (“U,)

: computing

Commit/Abort

time

4 locks
growing { (’U,) shrinking

computing

time

Deadlocks

A

B

T1:A=A+100,B=B-100
T2:B=B+100,A=A-100

Create a waits-for graph:
Nodes are transactions
There is an edge from Ti to Tj if Ti
Tj to release a lock
Deadline < cycle in the wait-for graph
Two ways to handle deadlocks
Deadlock prevention
Deadlock detection

T1

S(A)
R(A)
X(A)
W(A)

is waiting for
S(B) -- blocked

T)

T2

Deadlock!

CSE462/562 (Fall 2024): Lecture 17

5(B)
R(B)
X(B)
W(B)

S(A) -- blocked

16

Deadlock prevention

* |dea: make sure wait-for graph is acyclic
* Intuition: only allow edges to form in one of the following two directions:
» either from older transactions to younger transactions (wait-die)
* or only from younger to older (wound-wait)
e Aborting a transaction prevents forming wait-for edges

* Assign priorities based on start timestamps.
Assume Ti wants a lock that Tj holds. Two policies are possible:
- Wait-Die: If Ti has lower timestamp (i.e., older) than Tj, Ti waits; otherwise Ti aborts
- No preemption
- Wound-Wait: If Ti has lower timestamp (i.e., older), Tj aborts (preempted); otherwise Ti waits
- Preemptive scheduling

* |f a transaction re-starts, make sure it gets its original timestamp

 Why? (to avoid starvation)
CSE462/562 (Fall 2024): Lecture 17

17

Deadlock prevention: Wait-Die

A

B

T1:A=A+100,B=B-100
T2:B=B+100,A=A-100

Wait-Die: If Ti has lower timestamp (i.e., older) than Tj, Ti
waits; otherwise Ti aborts

Scenario 1: T1 requests S(B) before T2 requests S(A)

T1,ts=1

T2,ts=2

S(A)
R(A)
X(A)
W(A)

S(B) -- blocked

S(B) granted
R(B)

X(B)

W(B)
commit

5(B)
R(B)
X(B)
W(B)

S(A) -- abort

(retry with ts = 2...)

CSE462/562 (Fall 2024): Lecture 17

18

Deadlock prevention: Wait-Die

A

B

T1:A=A+100,B=B-100
T2:B=B+100,A=A-100

Wait-Die: If Ti has lower timestamp (i.e., older) than Tj, Ti

waits; otherwise Ti aborts

Scenario 2: T1 requests S(B) after T2 requests S(4)

()

T1,ts=1

S(A)
R(A)
X(A)
W(A)

S(B) granted
R(B)
X(B)

W(B)
@ commit

T2,ts=2

CSE462/562 (Fall 2024): Lecture 17

S(B)
R(B)
X(B)
W(B)
S(A) -- abort

(retry with ts = 2...)

19

Deadlock prevention: Wound-Wait

A

B

T1:A=A+100,B=B-100
T2:B=B+100,A=A-100

Wound-Wait: If Ti has lower timestamp (i.e., older), Tj
aborts (preempted); otherwise Ti waits

Scenario 1: T1 requests S(B) before T2 requests S(A)

() @)

T1,ts=1

S(A)
R(A)
X(A)
W(A)

S(B)
R(B)
X(B)
W(B)
commit

T2,ts=2

CSE462/562 (Fall 2024): Lecture 17

S(B)

R(B)

X(B)

W(B)

abort (preemp

(retry with ts = 2...)

fed)

20

Deadlock prevention: Wound-Wait

A

B

T1:A=A+100,B=B-100
T2:B=B+100,A=A-100

Wound-Wait: If Ti has lower timestamp (i.e., older), Tj
aborts (preempted); otherwise Ti waits

Scenario 2: T1 requests S(B) after T2 requests S(4)

() (=)

wait-for edge from T2 to T1 disappears after T2 is preempted

T1,ts=1

T2,ts=2

S(A)
R(A)
X(A)
W(A)

S(B)
R(B)
X(B)
W(B)
commit

S(B)

R(B)

X(B)

W(B)

S(A) -- blocked

abort (preemp

(retry with ts = 2...)

+

CSE462/562 (Fall 2024): Lecture 17

ted)

21

Deadlock detection

* Explicitly create a waits-for graph:
- Nodes are transactions
- There is an edge from Ti to Tj if Ti is waiting for Tj to release a lock

* Periodically check for cycles in the waits-for graph
 If there’s a cycle, abort at least one transaction in the cycle

T1: S(A), S(D), S(B)

T2: X(B) X(C)

T3: S(D), S(C), X(A)
T4: X(B)

CSE462/562 (Fall 2024): Lecture 17 22

Deadlock detection (cont’d)

* |n practice, most systems do detection
* Experiments show that most waits-for cycles are length 2 or 3
* Hence, only a few transactions actually need to be aborted
* Implementations can vary

e Can construct the graph and periodically look for cycles
* When is the graph created ?
* Which process checks for cycles ?

* Can also use a “time-out” scheme
* if T has been waiting on a lock for a long time, assume it’s in a deadlock and abort

CSE462/562 (Fall 2024): Lecture 17

23

What we have glossed over

* What should we lock?
* We assume tuples here, but that can be expensive!
* |f we do table locks, that’s too conservative
* Multi-granularity locking

* How to deal with phantoms?

* Locking in indexes
* don’t want to lock a B-tree root for a whole transaction!
* more fine-grained concurrency control in indexes

e CC w/out locking (we’ll omit it in this course)
* “optimistic” concurrency control
* “timestamp” and multi-version concurrency control
* locking usually better, though

CSE462/562 (Fall 2024): Lecture 17

24

Multi-granularity locks

* Hard to decide what granularity to lock (tuples vs. pages vs. tables).
* Shouldn’t have to make same decision for all transactions!

* Data “containers” are nested:

Database

Tables

contains Pagel

Y ‘

Tuples

CSE462/562 (Fall 2024): Lecture 17

Solution: new lock modes and protocols

* Allow Xacts to lock at each level, but with a special protocol using new “intention” locks:

* Still need S and X locks, but before locking an item, Xact must have proper intension
locks on all its ancestors in the granularity hierarchy.

0 IS—Intent to get S lock(s) at finer granularity. s [x [sx[s [x
0 IX—Intent to get X lock(s) at finer granularity. s NN |V |y
0 SIX mode: Like S & IX at the same time. Why X |+ |
useful? SIX |
S | v
X

CSE462/562 (Fall 2024): Lecture 17

Example: 2-level hierarchy

T1 scans R, and updates a few tuples:
* T1 gets an SIX lock on R, then get X lock on tuples that are updated.

T2 uses an index to read only part of R:
e T2 gets an IS lock on R, and repeatedly gets an S lock on tuples of R.

T3 reads all of R:
T3 gets an S lock on R.

* OR, T3 could behave like T2; can use lock escalation to decide which.

Lock escalation

* Dynamically asks for coarser-grained locks when too many

low level locks acquired

CSE462/562 (Fall 2024): Lecture 17

Tables
Tuples
IS | IX | S

s [[V [

x [y [

SIX \/

S |+

X

27

Dynamic Databases — The “Phantom” Problem

 If the DB is not a fixed collection of objects, even Strict 2PL (on individual items) will not assure serializability:

e Consider T1 — “Find the highest GPA among students of each age”
* T1 locks all pages containing sailor records with age = 20
e and finds the highest GPA (say, GPA = 3.7).
* Next, T2 inserts a new student; GPA = 4.0, age = 20.
e T2 also deletes student with the highest GPA (say 3.8) among those of age = 21, and commits.
 T1 now locks all pages containing student records with age = 21, and finds highest GPA (say, GPA = 3.6).

* No serial execution could lead to T1’s result!

CSE462/562 (Fall 2024): Lecture 17 28

The problem

* T1 implicitly assumes that it has locked the set of all student records with age = 20.
e Assumption only holds if no student records are added while T1 is executing!
* Need some mechanism to enforce this assumption. (Index locking and predicate locking.)

* Example shows that conflict serializability guarantees serializability only if the set of
objects is fixed!

* e.g.table locks

 Solution: predicate locking

CSE462/562 (Fall 2024): Lecture 17

29

Predicate locking

* Grant lock on all records that satisfy some logical predicate, e.g. age > 2*salary.

* Index locking is a special case of predicate locking for which an index supports efficient
implementation of the predicate lock.

 What is the predicate in the sailor example?

* General predicate locking has a lot of locking overhead.
* too expensive!

CSE462/562 (Fall 2024): Lecture 17

30

Instead of predicate locking

e Full table scans lock entire tables

* Range lookups do “next-key” & gap locking
» physical stand-in for a logical range!

a

13

2*

|
M

S

scan: x>4

locks 5* and the gap before it (3, 5)

CSE462/562 (Fall 2024): Lecture 17

At this point,

insert 4: blocked
insert 10?

31

Lock management

Lock and unlock requests are handled by the lock manager

Lock table: a hash table over lock table entries

 for various resources, e.g., records, gaps, pages, tables, ...
Lock table entry:

- Number of transactions currently holding a lock

- Type of lock held (S, X, IS, IX, SIX)

- Pointer to queue of lock requests

Locking and unlocking have to be atomic operations

* requires latches (e.g. reader-writer locks/semaphores), which ensure that the process is not
interrupted while managing lock table entries

Lock upgrade: transaction that holds a shared lock can be upgraded to hold an exclusive lock
e Can cause deadlock problems

Deadlock prevention/detection

Locks vs Latches

What’s common ?
e Both used to synchronize concurrent tasks

What's different ?

* Locks are used for logical consistency
* Latches are used for physical consistency

Why treat ‘em differently ?
* Latches are short-duration lower-level locks that protects critical sections in the code
* depends on DBMS developer to prevent deadlocks
* Locks protects data/resources, much longer duration
* need deadlock prevention/detection, aborting transactions using priorities
* more lock modes, hierarchical

Where are latches used ?
* In alock manager!
* |In a shared memory buffer manager
* In a B+ Tree index
* In a log/transaction/recovery manager

Locks vs Latches

Latches Locks
Ownership Processes Transactions
Duration Very short Long (Xact duration)
Deadlocks No detection - code carefully ! Checked for deadlocks
Overhead Cheap - 10s of instructions Costly - 100s of instructions
(latch is directly addressable) (have to search for lock)
Modes S, X S, X, IS, IX, SIX

Granularity

Flat - no hierarchy

Hierarchical

Recap on Transactions & Concurrency

* Atomicity

* A Xact’s effect is always applied as a whole, or not at all

Consistency
* Run by itself must leave the DB in a consistent state (no IC violations)

Isolation
* “protected” from the effects of concurrently scheduled other transactions

Durability

 If a transaction has successfully completed, its effects should persist even if the system crashes before
all its changes are reflected on disk.

Issues: Effect of interleaving transactions, and crashes, may result violate ACID.
* Needs concurrency control & crash recovery

CSE462/562 (Fall 2024): Lecture 17

35

Motivation for crash recovery

* Atomicity:
* Transactions may abort (“Rollback”).
* Durability:
 What if DBMS stops running? (Causes?)

- Desired state after system restarts:
 T1 & T3 should be durable.
e T2, T4 & T5 should be aborted (effects not seen).

T -
T2
T3
T4
T5

crash!
« Commit I
» Abort

Commit

CSE462/562 (Fall 2024): Lecture 17

36

Assumptions

* Concurrency control is in effect.
 Strict 2-PL, in particular.

» Updates are happening “in place”.
P PP g P
* i.e. data are overwritten on (or deleted from) the actual pages.

e Can you think of a simple scheme (requiring no logging) to guarantee Atomicity &
Durability?
 What happens during normal execution (what is the minimum lock granularity)?
 What happens when a transaction commits?
* What happens when a transaction aborts?

CSE462/562 (Fall 2024): Lecture 17

37

Buffer manager plays a key role

e Force policy — make sure that every update is on disk before commit.
— Provides durability without REDO logging.
— But, can cause poor performance.

e No Steal policy — don’t allow buffer-pool frames with uncommited updates to
overwrite committed data on disk.

— Useful for ensuring atomicity without UNDO logging.
— But can cause poor performance.

CSE462/562 (Fall 2024): Lecture 17

38

Preferred buffer management policy: steal/no-force

* This combination is most complicated but allows for highest performance.

* NO FORCE: do not have to flush all dirty pages of a transaction to disk before it commits

e complicates Durability
 What if system crashes before a modified page written by a committed transaction makes it to disk?

* Write as little as possible, in a convenient place, at commit time, to support REDOing modifications.

* STEAL: allows buffer pool with uncommitted updates to overwrite committed data on disk

* complicates Atomicity

 What if the Xact that performed updates aborts?

* What if system crashes before Xact is finished?

* Must remember the old value of P (to support UNDQOing the write to page P).

CSE462/562 (Fall 2024): Lecture 17

39

Buffer management policies

No Steal Steal
No Force Fastest No Force
Force Slowest Force
Performance

Implications

CSE462/562 (Fall 2024): Lecture 17

No Steal Steal

No UNDO | UNDO
REDO REDO

No UNDO | UNDO
No REDO |No REDO

Logging/Recovery
Implications

40

Basic Idea: Logging

 Record REDO and UNDO information, for every update, in a /og.
e Sequential writes to log (put it on a separate disk).
* Minimal info (diff) written to log, so multiple updates fit in a single log page.

* Log: An ordered list of REDO/UNDO actions
* Log record contains:

<XID, pagelD, offset, length, old data, new data>
e and additional control info (which we’ll see soon).

CSE462/562 (Fall 2024): Lecture 17

41

Write-Ahead Logging (WAL)

* The Write-Ahead Logging Protocol:

@® Must flush the log record for an update before the corresponding data page gets to disk.
@ Must flush all log records for a Xact before commit

* alternatively,. transaction is not considered as committed until all of its log records including its
“commit” record are on the stable log.

e #1 (with UNDO info) helps provide Atomicity.
e #2 (with REDO info) helps provide Durability.

* This allows us to employ Steal/No-Force policy

e Exactly how is logging (and recovery) done?
 We’ll look at the ARIES algorithms.
* Algorithms for Recovery and Isolation Exploiting Semantics

CSE462/562 (Fall 2024): Lecture 17

42

WAL & the log

e LSNs are monotonically increasing.

pageLSNs

flushedLSN

Each data page contains a pagelLSN.

Each log record has a unique Log Sequence Number (LSN).

* The LSN of the most recent log record for an update to that page.

System keeps track of flushedLSN.
* The max LSN flushed so far.

pageLSNi < flushedLSN

CSE462/562 (Fall 2024): Lecture 17

WAL: Before page i is flushed to disk, the log must satisfy:

=)

Log records
flushed to disk

flushedLSN

pageLSN

e

“Log tail”
in RAM

43

Log Records

prevLSN is the LSN of the previous log record
written by this Xact (so records of an Xact

LogRecord fields: form a linked list backwards in time)
LSN Possible log record types:
prevLSN . Update
i;lpl):)e * Checkpoint (for log maintenance)
_ pagelD e Compensation Log Records (CLRs)
update Iength e for UNDO actions
records < offset * Commit/Abort
only before-image * End (indicates end of commit/abort)

\ after-image

CSE462/562 (Fall 2024): Lecture 17 44

Other logging-related state

* Two -in-memory tables

* Transaction Table
* One entry per currently active Xact.
* entry removed when Xact commits or aborts
* Contains XID, status (running/committing/aborting), and lastLSN (most recent LSN written by Xact).

* Dirty Page Table:
* One entry per dirty page currently in buffer pool.
e Contains recLSN -- the LSN of the log record which first caused the page to be dirty.
* If a dirty page is flushed to disk, it is removed from dirty page table

CSE462/562 (Fall 2024): Lecture 17

45

The big picture: what’s stored and where

LogRecords
LSN

prevLSN

XID

type

pagelD
length

offset
before-image
after-image

(L

RAM
Xact Table
Data pages lastLSN
each status
with a
pageL.SN Dirty Page Table
recLSN
Master record
flushedLSN

CSE462/562 (Fall 2024): Lecture 17

46

Normal execution of an Xact

 Series of reads & writes, followed by commit or abort.
* We will assume that disk write is atomic.
* In practice, additional details to deal with non-atomic writes.

e Strict 2-PL.

 STEAL, NO-FORCE buffer management, with Write-Ahead Logging.

CSE462/562 (Fall 2024): Lecture 17

47

Transaction Commit

* Write commit record to log.

All log records up to Xact’s commit record are flushed to disk.
* Guarantees that flushedLSN > lastLSN.
* Note that log flushes are sequential, synchronous writes to disk.
* Many log records per log page.

Write an end record to log (no need to flush immediately)

Commit() returns.

* When does a transaction becomes durable in the database?
 When its commit log record is flushed to disk, even if there are still dirty pages in bufmgr.

CSE462/562 (Fall 2024): Lecture 17

48

Simple transaction abort

* For now, consider an explicit abort of a Xact.
* No crash involved.

* First, set the transaction state in the transaction table to aborting.
* Write an Abort log record before starting to rollback operations
 We want to “play back” the log in reverse order, UNDOing updates.
* Get lastLSN of Xact from Xact table.
* Can follow chain of log records backward via the prevLSN field.
* Write a “CLR” (compensation log record) for each undone operation.
* more details on next slide
* Once its finished, write a transaction end log record in the disk

* Q: do we need to wait for abort, CLRs and end record to be flushed?

CSE462/562 (Fall 2024): Lecture 17

49

Simple transaction abort (cont’d) e >

e -
S O
N D é.\;&
S S oz

* To perform UNDO, must have a lock on data!
e We still have the lock because of strict 2-PL.

* Before restoring old value of a page, write a CLR:
* Must continue logging during undo in case of crash

* CLR has one extra field: undonextLSN
* Points to the next LSN to undo (i.e. the prevLSN of the record we’re currently undoing).

 CLR contains REDO info

* CLRsis never undone
* Undo needn’t be idempotent (>1 UNDO won’t happen)
e But they might be Redone when repeating history (=1 UNDO guaranteed)

e At end of all UNDOs, write an “end” log record.

CSE462/562 (Fall 2024): Lecture 17

50

Checkpointing

* Conceptually, we keep log around for all time. Obviously this has performance issues...

* Periodically, the DBMS creates a checkpoint, in order to minimize the time taken to
recover in the event of a system crash. Write to log:

* begin_checkpoint record: Indicates when chkpt began.

* end checkpoint record: Contains current Xact table and dirty page table. This is a fuzzy checkpoint’:

e Other Xacts continue to run; so these tables accurate only as of the time of the begin_checkpoint
record.

* No attempt to force all dirty pages to disk; effectiveness of checkpoint limited by oldest unwritten
change to a dirty page.

* However, the more dirty page gets flushed, the shorter time will be needed in crash recovery
e Store LSN of most recent chkpt record in a safe place (master record).

CSE462/562 (Fall 2024): Lecture 17 51

Crash Recovery: Big Picture

Oldest log rec. of
Xact active at crash

Smallest recLSN in
dirty page table after
Analysis

Last chkpt

CRASH

—_—T

0 Start from a checkpoint (found via master record).
0 Three phases. Need to do:

— Analysis - Figure out which Xacts committed
since checkpoint, which failed.

— all actions.
(repeat history)
— UNDO effects of failed Xacts.

CSE462/562 (Fall 2024): Lecture 17

52

Phase 1: the analysis phase

* Re-establish knowledge of state at checkpoint.
* via transaction table and dirty page table stored in the checkpoint

* Scan log forward from checkpoint.
* End record: Remove Xact from Xact table.
* All Other records: Add Xact to Xact table, set lastLSN=LSN, change Xact status on commit.
* also, for Update records: If page P not in Dirty Page Table, Add P to DPT, set its recLSN=LSN.

* At end of Analysis...

* transaction table says which xacts were active at time of crash.
* DPT says which dirty pages might not have made it to disk

CSE462/562 (Fall 2024): Lecture 17

53

Phase 2: the redo phase

* We Repeat History to reconstruct state at crash:
* Reapply all updates (including those of aborted Xacts), redo CLRs.

e Scan forward from log rec containing smallest recLSN in DPT. Q: why start here?

* For each update log record or CLR with a given LSN, REDO the action unless:

» Affected page is not in the Dirty Page Table, or
* Affected pageisin D.PT., but has recLSN > LSN, or
* pagelLSN (in DB) > LSN. (this last case requires |/O)

* To REDO an action:
* Reapply logged action.
* Set pagelLSN to LSN. No additional logging, no forcing!

CSE462/562 (Fall 2024): Lecture 17

54

Phase 3: the undo phase

ToUndo={lastLSNs of all Xacts in the Trans Table}
i.e., last log entry of the aborted transactions

Repeat:

* Choose (and remove) largest LSN among ToUndo.
* If this LSN is a CLR and undonextLSN==NULL

* Write an End record for this Xact.
 |f this LSN is a CLR, and undonextLSN != NULL

* Add undonextLSN to ToUndo
* Else this LSN is an update. Undo the update, write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

CSE462/562 (Fall 2024): Lecture 17

55

Example of recovery

/ / / / [/ yavi

/

LSN

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

00
05
10
20
30
40
45
50
60

snmn g
O
()

—— begin_checkpoint
end_checkpoint

update: T1 writes P5
update T2 writes P3

T1 abort
—— T1End

—— update: T3 writes P1

."F"4."P.+"

—=— update: T2 writes P5
> CRASH, RESTART

CSE462/562 (Fall 2024): Lecture 17

.*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
e
s
s

s
s
e
s

.
o*
.
.
.

.
.
‘‘‘‘‘
[.
.* .
. *
. *

. Ad
.* .
. .
. *
.* .
\d “

R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o
.

.
.
o

56

Example: crash during recovery

/ / / / [/ yavi

/

LSN

LOG

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

00,05 —'— begin_checkpoint, end_checkpoint

10
20
30
40
45
50
60

70
80
85

90,95 ricy/s GLR:WINd0:T2:LSN 20, T2 end

—i update: T1 writes P5
: update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1End
update: T3 writes P1

CRASH, RESTART
— CLR: Undo T2 LSN 60
_i CLR:Undo T3 LSN 50
—— T3 end
SX CRASH, RESTART

—-— update: T2 writes P5
X

undonextLSN

57

Additional crash issues

What happens if system crashes during Analysis? During REDO?

 How do you limit the amount of work in REDO?

* Flush asynchronously in the background.
* Watch “hot spots”!

* How do you limit the amount of work in UNDO?
* Avoid long-running Xacts.

* What about schema changes/disk space management?

CSE462/562 (Fall 2024): Lecture 17

58

Summary of logging/recovery

* Recovery Manager guarantees Atomicity & Durability.
e Use WAL to allow STEAL/NO-FORCE w/o sacrificing correctness.
* LSNs identify log records; linked into backwards chains per transaction (via prevLSN).

* pagelSN allows comparison of data page and log records.

e Checkpointing: A quick way to limit the amount of log to scan on recovery.

* Recovery works in 3 phases:
* Analysis: Forward from checkpoint.
* Redo: Forward from oldest recLSN.
* Undo: Backward from end to first LSN of oldest Xact alive at crash.

* Upon Undo, write CLRs.

* Redo “repeats history”: Simplifies the logic!

CSE462/562 (Fall 2024): Lecture 17

59

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: What is a transaction?
	Slide 3: Recap on Transactions & Concurrency
	Slide 4: Scheduling Transactions
	Slide 5: Anomalies with interleaved execution
	Slide 6: Anomalies with interleaved execution
	Slide 7: Conflict serializability
	Slide 8: View serializability
	Slide 9: Determining conflict serializability
	Slide 10: How to enforce conflict serializability?
	Slide 11: Pessimistic Concurrency Control
	Slide 12: Example: strict 2-PL
	Slide 13: Example: non-strict 2-PL
	Slide 14: Example: non-strict 2-PL
	Slide 15: Strict 2-PL vs non-strict 2-PL
	Slide 16: Deadlocks
	Slide 17: Deadlock prevention
	Slide 18: Deadlock prevention: Wait-Die
	Slide 19: Deadlock prevention: Wait-Die
	Slide 20: Deadlock prevention: Wound-Wait
	Slide 21: Deadlock prevention: Wound-Wait
	Slide 22: Deadlock detection
	Slide 23: Deadlock detection (cont’d)
	Slide 24: What we have glossed over
	Slide 25: Multi-granularity locks
	Slide 26: Solution: new lock modes and protocols
	Slide 27: Example: 2-level hierarchy
	Slide 28: Dynamic Databases – The “Phantom” Problem
	Slide 29: The problem
	Slide 30: Predicate locking
	Slide 31: Instead of predicate locking
	Slide 32: Lock management
	Slide 33: Locks vs Latches
	Slide 34: Locks vs Latches
	Slide 35: Recap on Transactions & Concurrency
	Slide 36: Motivation for crash recovery
	Slide 37: Assumptions
	Slide 38: Buffer manager plays a key role
	Slide 39: Preferred buffer management policy: steal/no-force
	Slide 40: Buffer management policies
	Slide 41: Basic Idea: Logging
	Slide 42: Write-Ahead Logging (WAL)
	Slide 43: WAL & the log
	Slide 44: Log Records
	Slide 45: Other logging-related state
	Slide 46: The big picture: what’s stored and where
	Slide 47: Normal execution of an Xact
	Slide 48: Transaction Commit
	Slide 49: Simple transaction abort
	Slide 50: Simple transaction abort (cont’d)
	Slide 51: Checkpointing
	Slide 52: Crash Recovery: Big Picture
	Slide 53: Phase 1: the analysis phase
	Slide 54: Phase 2: the redo phase
	Slide 55: Phase 3: the undo phase
	Slide 56: Example of recovery
	Slide 57: Example: crash during recovery
	Slide 58: Additional crash issues
	Slide 59: Summary of logging/recovery

