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What is a transaction?

•  A transaction is a sequence of one or more SQL operations treated as a unit
• START/BEGIN [TRANSACTION] to start a new transaction

• COMMIT: make all the changes by the current transaction permanent and visible

• ROLLBACK/ABORT: revert all the changes by the current transaction
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Transaction:
BEGIN;

INSERT INTO A VALUES (…)

SELECT * from A;

DELETE FROM A WHERE …;

COMMIT;
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Recap on Transactions & Concurrency
• ACID properties

• Atomicity
• A Xact’s effect is always applied as a whole, or not at all

• Consistency
• Run by itself must leave the DB in a consistent state (no IC violations)

• Isolation
• “protected” from the effects of concurrently scheduled other transactions
• Most stringent isolation level: serializable

• Operations may be interleaved, but execution must be equivalent to some sequential (serial) order 
of all transactions

• Durability
• If a transaction has successfully completed, its effects should persist even if the system crashes before 

all its changes are reflected on disk.

• Issues:  Effect of interleaving transactions, and crashes, may result violate ACID.
• Needs concurrency control & crash recovery
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Scheduling Transactions
• Serial schedule: Schedule that does not interleave the actions of different transactions.

• Equivalent schedules:  For any database state, the effect of executing the first schedule is 
identical to the effect of executing the second schedule.

• Serializable schedule:  A schedule that is equivalent to some serial execution of the 
transactions.

     (Note: If each transaction preserves consistency, every serializable schedule preserves 
consistency. )

• When we discuss schedules, we only consider reads/writes/commit/abort
• Ignores computation

• Two forms of (restricted) serializability
• conflict serializable
• view serializability

CSE462/562 (Fall 2024): Lecture 17 4



Anomalies with interleaved execution
• Dirty reads (WR conflict)

T1: R(A), W(A),                             R(B), W(B), Abort
T2:   R(A), W(A), C

• Unrepeatable reads (RW conflict)

T1: R(A),           R(A), W(A), C
T2:  R(A), W(A), C
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Anomalies with interleaved execution
• Phantom read (RW conflict w/ predicate)

T1: R(t: P(t))                              R(t: P(t)) C
T2:         W(A’ , s.t. A′ ∈ 𝑷) C

• Dirty write (WW conflict)

T1: W(A)                  W(B) C
T2:  W(A) W(B) C
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Conflict serializability 
• Two operations of two different transactions conflict if

• Performed on the same object

• At least one of them is a write

T1: R1 (A), 𝑊1(A),                𝑅1(B), 𝑊1(B)
T2:   𝑅2(A), 𝑊2(A)

Conflicts:
      𝑅1 𝐴 , 𝑊2 𝐴
      𝑊1 𝐴 , 𝑅2 𝐴
 𝑊1 𝐴 , 𝑊2 𝐴
 

• We can swap two adjacent nonconflicting operations without changing the final state

T1: R1 (A), 𝑊1(A), 𝑅1(B), 𝑊1(B)
T2:                           𝑅2(A), 𝑊2(A)

• Two schedules are conflict equivalent if one can be transformed into the other through swaps
• Involve the same actions of the same transactions in the same order

• Every pair of conflicting operations are ordered the same way

• Schedule S is said to be conflict serializable if it is conflict equivalent to some serial schedule S’
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View serializability
• View serializability is based on view equivalence

• Schedules S1 and S2 are view equivalent if:

• If Ti reads initial value of A in S1, then Ti also reads initial value of A in S2

• If Ti reads value of A written by Tj in S1, then Ti also reads value of A written by Tj in S2

• If Ti writes final value of A in S1, then Ti also writes final value of A in S2

T1: R(A)   W(A)
T2:    W(A)
T3:               W(A)

T1: R(A),W(A)
T2:               W(A)
T3:               W(A)

View equivalent but not conflict equivalent

• View serializability is “weaker” than conflict serializability!
• Every conflict serializable schedule is view serializable, but not vice versa!
• I.e. admits more serializable schedules
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Determining conflict serializability
• Dependency graph

• One node per Xact
• edge from Ti to Tj if

• an operation of Ti conflicts with an operation of Tj and
• Ti’s operation appears earlier in the schedule than the conflicting operation of Tj.

• Theorem: Schedule is conflict serializable if and only if its dependency graph is acyclic

T1:  R(A), W(A),                         R(B), W(B)
T2:     R(A), W(A), R(B), W(B)

T1 T2
A

B

Dependency graph
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How to enforce conflict serializability?
• Two operations of two different transactions conflict if

• Performed on the same object

• At least one of them is a write

T1: R1 (A), 𝑊1(A),                𝑅1(B), 𝑊1(B)
T2:   𝑅2(A), 𝑊2(A)

Conflicts:
      𝑅1 𝐴 , 𝑊2 𝐴
      𝑊1 𝐴 , 𝑅2 𝐴
 𝑊1 𝐴 , 𝑊2 𝐴
 

• We can swap two adjacent nonconflicting operations without changing the final state

T1: R1 (A), 𝑊1(A), 𝑅1(B), 𝑊1(B)
T2:                           𝑅2(A), 𝑊2(A)

• Two schedules are conflict equivalent if one can be transformed into the other through swaps
• Involve the same actions of the same transactions in the same order

• Every pair of conflicting operations are ordered the same way

• Schedule S is said to be conflict serializable if it is conflict equivalent to some serial schedule S’
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Pessimistic Concurrency Control
• Strict Two-phase Locking (Strict 2PL) Protocol:

• Each Xact must obtain a S (shared) lock on object before reading, and an X (exclusive) lock on object 
before writing.

• All locks held by a transaction are released when the transaction completes

• (Non-strict) 2PL Variant: Release locks anytime, but cannot acquire locks after releasing any lock.

•  If an Xact holds an X lock on an object, no other Xact can get a lock (S or X) on that object.

• Strict 2PL allows only conflict serializable schedules.
• Additionally, it simplifies transaction aborts

• (Non-strict) 2PL also allows only serializable schedules, but involves more complex abort processing

S X

S  –

X – –

Lock
Compatibility
Matrix
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Example: strict 2-PL

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: A = A - 100, B = B + 100

S(A)

R(A)

X(A)

W(A)

request S(A) -- blocked

S(B)

R(B)

X(B)

W(B)

S(A)

R(A)

X(A)

W(A)

Commit
Release A & B

……

Lock 
upgrade
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Example: non-strict 2-PL

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: A = A - 100, B = B + 100

X(A)

X(B)

R(A)

W(A)
request S(A) -- blocked

R(B)

W(B)

S(A)

R(A)

X(A)

W(A)

Commit

Release A

……

Release B

No new locks/lock 
upgrades at this point.
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Example: non-strict 2-PL

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: A = A - 100, B = B + 100

X(A)

X(B)

R(A)

W(A)
request S(A) -- blocked

R(B)
W(B)

S(A)

R(A)

X(A)

W(A)

abort

Release A

abort

Release B

susceptible to cascading aborts!

Usually avoided in DBMS to avoid 
wasted work.
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Strict 2-PL vs non-strict 2-PL
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Deadlocks

A

B

T1 T2

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)

S(B) -- blocked

S(A) -- blocked

Deadlock!

• Create a waits-for graph:
• Nodes are transactions
• There is an edge from Ti to Tj if Ti is waiting for 

Tj to release a lock
• Deadline  cycle in the wait-for graph
• Two ways to handle deadlocks

• Deadlock prevention
• Deadlock detection

T1 T2
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Deadlock prevention
• Idea: make sure wait-for graph is acyclic

• Intuition: only allow edges to form in one of the following two directions:

• either from older transactions to younger transactions (wait-die)

• or only from younger to older (wound-wait)

• Aborting a transaction prevents forming wait-for edges

• Assign priorities based on start timestamps.
Assume Ti wants a lock that Tj holds. Two policies are possible:

• Wait-Die: If Ti has lower timestamp (i.e., older) than Tj, Ti waits; otherwise Ti aborts

• No preemption

• Wound-Wait: If Ti has lower timestamp (i.e., older), Tj aborts (preempted); otherwise Ti waits

• Preemptive scheduling

• If a transaction re-starts, make sure it gets its original timestamp
• Why? (to avoid starvation)
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Deadlock prevention: Wait-Die
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T1, ts = 1 T2, ts = 2

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)
S(B) -- blocked

A

B

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

T1 T2

Scenario 1: T1 requests 𝑆 𝐵  before 𝑇2 requests 𝑆 𝐴

S(A) -- abort
S(B) granted
R(B)
X(B)
W(B)
commit

(retry with ts = 2…)

Wait-Die: If Ti has lower timestamp (i.e., older) than Tj, Ti 
waits; otherwise Ti aborts
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Deadlock prevention: Wait-Die
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T1, ts = 1 T2, ts = 2

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)

A

B

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

T1 T2

Scenario 2: T1 requests 𝑆 𝐵  after 𝑇2 requests 𝑆 𝐴
S(A) -- abort

S(B) granted
R(B)
X(B)
W(B)
commit

(retry with ts = 2…)

Wait-Die: If Ti has lower timestamp (i.e., older) than Tj, Ti 
waits; otherwise Ti aborts
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Deadlock prevention: Wound-Wait
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T1, ts = 1 T2, ts = 2

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)
S(B)

A

B

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

T1 T2

Scenario 1: T1 requests 𝑆 𝐵  before 𝑇2 requests 𝑆 𝐴 abort (preempted)

R(B)
X(B)
W(B)
commit

(retry with ts = 2…)

Wound-Wait: If Ti has lower timestamp (i.e., older), Tj 
aborts (preempted); otherwise Ti waits

20



Deadlock prevention: Wound-Wait
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T1, ts = 1 T2, ts = 2

S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)

S(B)

A

B

T1: A = A + 100, B = B - 100
T2: B = B + 100, A = A - 100

T1 T2

Scenario 2: T1 requests 𝑆 𝐵  after 𝑇2 requests 𝑆 𝐴 S(A) -- blocked

R(B)
X(B)
W(B)
commit

(retry with ts = 2…)

Wound-Wait: If Ti has lower timestamp (i.e., older), Tj 
aborts (preempted); otherwise Ti waits

abort (preempted)

wait-for edge from T2 to T1 disappears after T2 is preempted
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Deadlock detection
• Explicitly create a waits-for graph:

• Nodes are transactions

• There is an edge from Ti to Tj if Ti is waiting for Tj to release a lock

• Periodically check for cycles in the waits-for graph
• If there’s a cycle, abort at least one transaction in the cycle

T1:  S(A), S(D),        S(B)
T2:                  X(B)              X(C)
T3:        S(D), S(C),      X(A)
T4:             X(B)

T1 T2

T4 T3

T1 T2

T4 T3
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Deadlock detection (cont’d)
• In practice, most systems do detection

• Experiments show that most waits-for cycles are length 2 or 3

• Hence, only a few transactions actually need to be aborted

• Implementations can vary

• Can construct the graph and periodically look for cycles
• When is the graph created ? 

• Which process checks for cycles ? 

• Can also use a “time-out” scheme

• if T has been waiting on a lock for a long time, assume it’s in a deadlock and abort
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What we have glossed over
• What should we lock?

• We assume tuples here, but that can be expensive!

• If we do table locks, that’s too conservative

• Multi-granularity locking

• How to deal with phantoms?

• Locking in indexes

• don’t want to lock a B-tree root for a whole transaction!

• more fine-grained concurrency control in indexes

• CC w/out locking (we’ll omit it in this course)

• “optimistic” concurrency control

• “timestamp” and multi-version concurrency control

• locking usually better, though
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Multi-granularity locks
• Hard to decide what granularity to lock (tuples vs. pages vs. tables).

• Shouldn’t have to make same decision for all transactions!

• Data “containers” are nested: 

Tuples

Tables

Pages

Database

contains
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Solution: new lock modes and protocols
• Allow Xacts to lock at each level, but with a special protocol using new “intention” locks:

• Still need S and X locks, but before locking an item,  Xact must have proper intension 
locks on all its ancestors in the granularity hierarchy.

IS – Intent to get S lock(s) at finer granularity.

IX – Intent to get X lock(s) at finer granularity.

SIX mode: Like S & IX at the same time. Why 
useful?

IS IX SIX

IS

IX

SIX







 



S X

S

X




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Example: 2-level hierarchy
• T1 scans R, and updates a few tuples:

• T1 gets an SIX lock on R, then get X lock on tuples that are updated.

• T2 uses an index to read only part of R:

• T2 gets an IS lock on R, and repeatedly gets an S lock on tuples of R.

• T3 reads all of R:

• T3 gets an S lock on R. 

• OR, T3 could behave like T2; can use lock escalation to decide which.

• Lock escalation 

• Dynamically asks for coarser-grained locks when too many 

      low level locks acquired

IS IX SIX

IS

IX

SIX







 



S X

S

X





Tuples

Tables
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Dynamic Databases – The “Phantom” Problem
• If the DB is not a fixed collection of objects, even Strict 2PL (on individual items) will not assure serializability:

• Consider T1 – “Find the highest GPA among students of each age”

• T1 locks all pages containing sailor records with age = 20

• and finds the highest GPA (say, GPA = 3.7).

• Next, T2 inserts a new student; GPA = 4.0, age = 20.

• T2 also deletes student with the highest GPA (say 3.8) among those of age = 21, and commits.

• T1 now locks all pages containing student records with age = 21, and finds highest GPA (say, GPA = 3.6).

• No serial execution could lead to T1’s result!
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The problem
• T1 implicitly assumes that it has locked the set of all student records with age = 20.

• Assumption only holds if no student records are added while T1 is executing!

• Need some mechanism to enforce this assumption.  (Index locking and predicate locking.)

• Example shows that conflict serializability guarantees serializability only if the set of 
objects is fixed!
• e.g. table locks

• Solution: predicate locking
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Predicate locking
• Grant lock on all records that satisfy some logical predicate,  e.g. age > 2*salary.

• Index locking is a special case of predicate locking for which an index supports efficient 
implementation of the predicate lock.
• What is the predicate in the sailor example?

• General predicate locking has a lot of locking overhead.
• too expensive!

CSE462/562 (Fall 2024): Lecture 17 30



Instead of predicate locking
• Full table scans lock entire tables

• Range lookups do “next-key” & gap locking
• physical stand-in for a logical range!

2* 3* 14* 16*

135

7*5* 8*

S

scan: x > 4

locks 5* and the gap before it (3, 5)

At this point,

insert 4: blocked
insert 10? 
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Lock management
• Lock and unlock requests are handled by the lock manager

• Lock table: a hash table over lock table entries
• for various resources, e.g., records, gaps, pages, tables, …

• Lock table entry:

• Number of transactions currently holding a lock

• Type of lock held (S, X, IS, IX, SIX)

• Pointer to queue of lock requests

• Locking and unlocking have to be atomic operations

• requires latches (e.g. reader-writer locks/semaphores), which ensure that the process is not 
interrupted while managing lock table entries

• Lock upgrade: transaction that holds a shared lock can be upgraded to hold an exclusive lock

• Can cause deadlock problems

• Deadlock prevention/detection
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Locks vs Latches
• What’s common ?

• Both used to synchronize concurrent tasks

• What’s different ?
• Locks are used for logical consistency
• Latches are used for physical consistency

• Why treat ‘em differently ?
• Latches are short-duration lower-level locks that protects critical sections in the code

• depends on DBMS developer to prevent deadlocks
• Locks protects data/resources, much longer duration

• need deadlock prevention/detection, aborting transactions using priorities
• more lock modes, hierarchical

• Where are latches used ?
• In a lock manager !
• In a shared memory buffer manager
• In a B+ Tree index
• In a log/transaction/recovery manager
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Locks vs Latches

Latches Locks

Ownership Processes Transactions

Duration Very short Long (Xact duration)

Deadlocks No detection - code carefully ! Checked for deadlocks

Overhead Cheap - 10s of instructions 
(latch is directly addressable)

Costly - 100s of instructions
(have to search for lock)

Modes S, X S, X, IS, IX, SIX

Granularity Flat - no hierarchy Hierarchical
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Recap on Transactions & Concurrency
• Atomicity

• A Xact’s effect is always applied as a whole, or not at all

• Consistency
• Run by itself must leave the DB in a consistent state (no IC violations)

• Isolation
• “protected” from the effects of concurrently scheduled other transactions

• Durability
• If a transaction has successfully completed, its effects should persist even if the system crashes before 

all its changes are reflected on disk.

• Issues:  Effect of interleaving transactions, and crashes, may result violate ACID.
• Needs concurrency control & crash recovery
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Motivation for crash recovery
• Atomicity: 

• Transactions may abort (“Rollback”).

• Durability:
• What if DBMS stops running?  (Causes?)

• Desired state after system restarts:
• T1 & T3 should be durable.

• T2, T4 & T5 should be aborted (effects not seen).
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crash!
T1
T2
T3
T4
T5

Abort

Commit

Commit
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Assumptions
• Concurrency control is in effect. 

• Strict 2-PL, in particular.

• Updates are happening “in place”.
• i.e. data are overwritten on (or deleted from) the actual pages.

• Can you think of a simple scheme (requiring no logging) to guarantee Atomicity & 
Durability?
• What happens during normal execution (what is the minimum lock granularity)?

• What happens when a transaction commits?

• What happens when a transaction aborts?
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Buffer manager plays a key role
• Force policy – make sure that every update is on disk before commit.

– Provides durability without REDO logging.

– But, can cause poor performance.

• No Steal policy – don’t allow buffer-pool frames with uncommited updates to 
overwrite committed data on disk.

– Useful for ensuring atomicity without UNDO logging.

– But can cause poor performance.
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Preferred buffer management policy: steal/no-force
• This combination is most complicated but allows for highest performance.

• NO FORCE: do not have to flush all dirty pages of a transaction to disk before it commits

• complicates Durability

• What if system crashes before a modified page written by a committed transaction makes it to disk?

• Write as little as possible, in a convenient place, at commit time, to support REDOing modifications.

• STEAL: allows buffer pool with uncommitted updates to overwrite committed data on disk

• complicates Atomicity

• What if the Xact that performed updates aborts?

• What if system crashes before Xact is finished?

• Must remember the old value of P (to support UNDOing the write to page P).
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Buffer management policies
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Force

No Force

No Steal Steal

No REDO

No UNDO UNDO

No REDO

UNDO
REDO

No UNDO
REDO

Force

No Force

No Steal Steal

Slowest

Fastest

Performance 
Implications

Logging/Recovery 
Implications
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Basic Idea: Logging
• Record REDO and UNDO information, for every update, in a log.

• Sequential writes to log (put it on a separate disk).

• Minimal info (diff) written to log, so multiple updates fit in a single log page.

• Log: An ordered list of REDO/UNDO actions
• Log record contains: 

<XID, pageID, offset, length, old data, new data> 
• and additional control info (which we’ll see soon).
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Write-Ahead Logging (WAL)
• The Write-Ahead Logging Protocol:

 Must flush the log record for an update before the corresponding data page gets to disk.

 Must flush all log records for a Xact before commit

• alternatively,. transaction is not considered as committed until all of its log records including its 
“commit” record are on the stable log.

• #1 (with UNDO info) helps provide Atomicity.

• #2 (with REDO info) helps provide Durability.

• This allows us to employ Steal/No-Force policy

• Exactly how is logging (and recovery) done?
• We’ll look at the ARIES algorithms.

• Algorithms for Recovery and Isolation Exploiting Semantics
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WAL & the log

• Each log record has a unique Log Sequence Number (LSN). 
• LSNs are monotonically increasing.

• Each data page contains a pageLSN.
• The LSN of the most recent log record for an update to that page.

• System keeps track of flushedLSN.
• The max LSN flushed so far.

• WAL:  Before page i is flushed to disk, the log must satisfy:

pageLSNi  flushedLSN
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LSNs pageLSNs

RAM

flushedLSN

DB

pageLSN

Log records
flushed to disk

“Log tail”
  in RAM

flushedLSN
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Log Records
prevLSN is the LSN of the previous log record 

written by this Xact (so records of an Xact 
form a linked list backwards in time)

Possible log record types:

• Update

• Checkpoint (for log maintenance)

• Compensation Log Records (CLRs) 
• for UNDO actions

• Commit/Abort

• End (indicates end of commit/abort)
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LSN

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecord fields:

update
records
only
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Other logging-related state
• Two -in-memory tables

• Transaction Table
• One entry per currently active Xact.

• entry removed when Xact commits or aborts

• Contains XID, status (running/committing/aborting), and lastLSN (most recent LSN written by Xact).

• Dirty Page Table:
• One entry per dirty page currently in buffer pool.

• Contains recLSN -- the LSN of the log record which first caused the page to be dirty.

• If a dirty page is flushed to disk, it is removed from dirty page table
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The big picture: what’s stored and where
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DB

Data pages
 each

 with a

 pageLSN

Xact Table
 lastLSN

 status

Dirty Page Table
 recLSN

flushedLSN

RAM

LSN

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecords

LOG

Master record
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Normal execution of an Xact
• Series of reads & writes, followed by commit or abort.

• We will assume that disk write is atomic.

• In practice, additional details to deal with non-atomic writes.

• Strict 2-PL. 

• STEAL, NO-FORCE buffer management, with Write-Ahead Logging.
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Transaction Commit
• Write commit record to log.

• All log records up to Xact’s commit record are flushed to disk.
• Guarantees that flushedLSN  lastLSN.

• Note that log flushes are sequential, synchronous writes to disk.

• Many log records per log page.

• Write an end record to log (no need to flush immediately)

• Commit() returns.

• When does a transaction becomes durable in the database?
• When its commit log record is flushed to disk, even if there are still dirty pages in bufmgr.
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Simple transaction abort
• For now, consider an explicit abort of a Xact.

• No crash involved.

• First, set the transaction state in the transaction table to aborting.
• Write an Abort log record before starting to rollback operations

• We want to “play back” the log in reverse order, UNDOing updates.

• Get lastLSN of Xact from Xact table.

• Can follow chain of log records backward via the prevLSN field.

• Write a “CLR” (compensation log record) for each undone operation.

• more details on next slide

• Once its finished, write a transaction end log record in the disk

• Q: do we need to wait for abort, CLRs and end record to be flushed?
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Simple transaction abort  (cont’d)

• To perform UNDO, must have a lock on data!
• We still have the lock because of strict 2-PL.

• Before restoring old value of a page, write a CLR:
• Must continue logging during undo in case of crash
• CLR has one extra field: undonextLSN

• Points to the next LSN to undo (i.e. the prevLSN of the record we’re currently undoing).

• CLR contains REDO info
• CLRs is never undone 

• Undo needn’t be idempotent (>1 UNDO won’t happen)
• But they might be Redone when repeating history (=1 UNDO guaranteed)

• At end of all UNDOs, write an “end” log record.
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Checkpointing
• Conceptually, we keep log around for all time.  Obviously this has performance issues…

• Periodically, the DBMS creates a checkpoint, in order to minimize the time taken to 
recover in the event of a system crash.  Write to log:
• begin_checkpoint record:  Indicates when chkpt began.

• end_checkpoint record:  Contains current Xact table and dirty page table.  This is a `fuzzy checkpoint’:

• Other Xacts continue to run; so these tables accurate only as of the time of the begin_checkpoint 
record.

• No attempt to force all dirty pages to disk; effectiveness of checkpoint limited by oldest unwritten 
change to a dirty page. 

• However, the more dirty page gets flushed, the shorter time will be needed in crash recovery

• Store LSN of most recent chkpt record in a safe place (master record).
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Crash Recovery: Big Picture
Start from a checkpoint (found via master record).

Three phases.  Need to do:

– Analysis - Figure out which Xacts committed 
since checkpoint, which failed.

– REDO all actions.

(repeat history)

– UNDO effects of failed Xacts.
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Phase 1: the analysis phase
• Re-establish knowledge of state at checkpoint.

• via transaction table and dirty page table stored in the checkpoint

• Scan log forward from checkpoint.
• End record: Remove Xact from Xact table.

• All Other records: Add Xact to Xact table, set lastLSN=LSN, change Xact status on commit.

• also, for Update records: If page P not in Dirty Page Table, Add P to DPT, set its recLSN=LSN.

• At end of Analysis…
• transaction table says which xacts were active at time of crash.

• DPT says which dirty pages might not have made it to disk
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Phase 2: the redo phase
• We Repeat History to reconstruct state at crash:

• Reapply all updates (including those of aborted Xacts), redo CLRs.

• Scan forward from log rec containing smallest recLSN in DPT.    Q: why start here?

• For each update log record or CLR  with a given LSN, REDO the action unless:  
• Affected page is not in the Dirty Page Table, or

• Affected page is in D.P.T., but has recLSN > LSN, or

• pageLSN (in DB)  LSN. (this last case requires I/O)

• To REDO an action:
• Reapply logged action.

• Set pageLSN to LSN.  No additional logging, no forcing!
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Phase 3: the undo phase
ToUndo={lastLSNs of all Xacts in the Trans Table}

              i.e., last log entry of the aborted transactions

Repeat:
• Choose (and remove) largest LSN among ToUndo.

• If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Xact.
• If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo 
• Else this LSN is an update.  Undo the update, write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.
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Example of recovery
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Example: crash during recovery
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begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5
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CLR: Undo T3 LSN 50

T3 end
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Additional crash issues
• What happens if system crashes during Analysis?  During REDO?

• How do you limit the amount of work in REDO?
• Flush asynchronously in the background.

• Watch “hot spots”!

• How do you limit the amount of work in UNDO?
• Avoid long-running Xacts.

• What about schema changes/disk space management?
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Summary of logging/recovery
• Recovery Manager guarantees Atomicity & Durability.

• Use WAL to allow STEAL/NO-FORCE w/o sacrificing correctness.

• LSNs identify log records; linked into backwards chains per transaction (via prevLSN).

• pageLSN allows comparison of data page and log records.

• Checkpointing: A quick way to limit the amount of log to scan on recovery. 

• Recovery works in 3 phases:
• Analysis: Forward from checkpoint.

• Redo: Forward from oldest recLSN.

• Undo: Backward from end to first LSN of oldest Xact alive at crash.

• Upon Undo, write CLRs.

• Redo “repeats history”: Simplifies the logic!
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