Logistics updates

• Poll for final exam alternative date for those with conflicts
• 2-day extension to project 2
 • Code due on 3/10, 11:59 pm. Write-up due on 3/12, 11:59 pm.
 • Project 3 will still be released on 3/10
In this lecture

• Composite key in hash index
• How to design a good hash function?
Composite keys in hash index

• Composite key: multiple fields as the key (f1, f2, ..., fk)

• How to handle composite keys in hash index?
 • Combine the hash values of each field together
 • Many libs available, e.g., boost::hash_combine, absl::Hash::combine(), etc ...
 e.g., in boost:

 seed ^= hash_value + 0x9e3779b9 + (seed<<6) + (seed>>2);

• Search with composite keys
 • Must specify all the keys, equality search only
 • Can’t perform partial key search
 • e.g., hash index on (sid, login)
 • may be used for predicate sid = 12345 AND login = ‘alice’
 • but not sid = 12345, nor logging = ‘Alice’
What might go wrong with hashing?

• Too many items with the same key
 • Extendible hashing and linear hashing will also *fail* when that happens

• Why can that happen?
 • Too many entries with the same key?
 • Not much that we can do, but we can try to incorporate other fields to make the keys distinct if it’s possible from the user’s perspective
 • Alternatively, consider using other types of index

• Hash collision
 • Some hash functions are prone to too many hash collisions
 • For instance, you’re hashing pointers of int64_t,
 • using modular hashing $h(x) = x \mod m$ with $m = 2^d$ for some d is going to leave many buckets completely empty
Designing Good Hash Functions

• Formal set up: let $U = [N]$ denote the numbers $\{0, 1, 2, \ldots, N - 1\}$. For any set $S \subseteq U$, where $|S| = n$, we want to support:
 • add(x): add the key x to S
 • query(x): is the key $q \in S$?
 • delete(x): remove the key x from S

 efficiently!

We consider the static case here (fixed set S). Note that even though S is fixed, we don’t know S ahead of time. Imagine it’s chosen by an adversary from $\binom{N}{n}$ possible choices

Our hash function needs to work well for any such (fixed) set S.
Static vs Dynamic

• Static: Given a set \(S \) of items, we want to store them so that we can do lookups quickly. E.g., a fixed dictionary.

• Dynamic: here we have a sequence of insert, lookup, and perhaps delete requests. We want to do these all efficiently.
Hash Function Basics

• We will perform inserts and lookups by an array A of M buckets, and a hash function $h : U \rightarrow \{0, \ldots, M - 1\}$ (i.e., $h : U \rightarrow [M]$). Given an element x, the idea of hashing is we want to store it in $A[h(x)]$.
 - If $N = |U|$ is small, this problem is trivial. But in practice, N is often big.

• Collision happens when $x \neq y \land h(x) = h(y)$
 - Open hashing with linked list/overflow pages
 - Extendible/linear hashing can be used to alleviate the problem but can’t handle it well if there is skewness in hash values
Desirable Properties

• Small probability of distinct keys colliding: if \(x \neq y \in S \) then \(\Pr_{h \leftarrow H}[h(x) = h(y)] \) is “small”.
 - \(h \leftarrow H \) means the random choice over a family \(H \) of hash functions.

• Small range: we want \(M \) to be small. At odds with first desired property
 - ideally \(M = O(n) \) but it takes too much space.

• Small number of bits to store a hash function \(h \). This is at least \(\Omega(\log_2 |H|) \).

• \(h \) should be easy to compute

• Given this, the time to lookup an item \(x \) is \(O(\text{length of list } A[h(x)]) \)
Bad News

• One way to spread elements out nicely is to spread them randomly. Unfortunately, we can’t just use a random number generator to decide where the next element goes because then we would never be able to find it again. So, we want h to be something “pseudorandom” in some formal sense.

• (Bad news) For any deterministic hash function h (i.e., $|H|=1$), if $|U| \geq (n - 1)M + 1$, there exists a set S of n elements that all hash to the same location.
 • simple pigeon hole argument.
Randomness to Rescue

• Introduce a family of hash functions, \(H \) with \(|H| > 1 \), that \(h \) will be randomly chosen from for each key (but use the same choice for the same key).

• **Universal Hashing**: if \(x \neq y \in S \) then \(\Pr_{h \in H} [h(x) = h(y)] \leq 1/M. \)

• If \(H \) is universal, then for any set \(S \subseteq U \) of size \(n \), for any \(x \in U \) (e.g., that we might want to lookup, \(x \) may not come from \(S \)), if we choose \(h \) at random in a universal hash family \(H \), the expected number of collisions between \(x \) and other elements in \(S \) is at most \(n/M. \)
Property of Universal Hashing

• Proof:
 • Each \(y \in S \) (\(y \neq x \)) has at most a \(1/M \) chance of colliding with \(x \) by the definition of “universal”. So
 • Let \(C_{xy} = 1 \) if \(x \) and \(y \) collide and 0 otherwise.
 • Let \(C_x \) denote the total number of collisions for \(x \). So, \(C_x = \sum_{y \in S \land y \neq x} C_{xy} \).
 • We know \(E[C_{xy}] = \Pr(x \text{ and } y \text{ collide}) \leq 1/M \).
 • So, by linearity of expectation, \(E[C_x] = \sum_{y \in S \land y \neq x} E[C_{xy}] \leq n/M \).
How to Construct Universal Hashing?

• Consider the case where $|U| = 2^u$ and $M = 2^m$

• Take an $u \times m$ matrix A and fill it with random bits. For $x \in U$, view x as a u-bit vector in $\{0, 1\}^u$, and define $h(x) := Ax$ where the calculations are done modulo 2.

• There are 2^{um} hash functions in this family H

Note that $h(\overrightarrow{0}) = 0$, so picking a random function from H does not map each key to a random place.
Why it is a universal hash family?

- Proof:
 - Let \(A = (\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_m) \), where \(\vec{r}_i \) is the \(i^{th} \) row of the matrix \(A \).
 - Let’s view \(x \in U \) as a vector of \(\{0,1\} \), e.g., \(x = (0, 0, 1, 0, \ldots, 1) \).
 - Then \(h(x) = x_1 \vec{c}_1 + x_2 \vec{c}_2 + \cdots + x_m \vec{c}_m \).
 - Suppose we have \(x^{(1)}, x^{(2)} \in U \), s.t., \(x^{(1)} \neq x^{(2)} \). They will differ in at least one bit. WLOG, say it’s bit 1 and \(x^{(1)}_1 = 0, x^{(2)}_1 = 1 \).
 - For any \(\vec{c}_2, \ldots, \vec{c}_m \in \{0,1\}^u \), let’s fix those vectors (except \(\vec{c}_1 \)).
 - No matter how \(\vec{c}_1 \) changes, \(h(x^{(1)}) = x_2 \vec{c}_2 + \cdots + x_m \vec{c}_m \) remain the same.
 - On the other hand, \(h(x^{(2)}) = x_1 \vec{c}_1 + h(x^{(1)}) \) are all different
 - because each \(\vec{c}_1 \) will be different from any other vectors by at least one bit and the corresponding bit in the hash value is flipped.
 - Thus we have only 1 out of \(2^m \) different \(\vec{c}_1 \) so that \(h(x^{(1)}) = h(x^{(2)}) \).
 - \(\Pr(h(x^{(1)}) = h(x^{(2)})) = \sum_{\vec{c}_2, \ldots, \vec{c}_m} \Pr(h(x^{(1)}) = h(x^{(2)})|\vec{c}_2, \ldots, \vec{c}_m) \Pr(\vec{c}_2, \ldots, \vec{c}_m) \)

This is not the only way to construct universal hash family though.
Perfect Hashing (for static case)

• We say a hash function is perfect for S if all lookups involve $O(1)$ work.
• Naïve method: an $O(n^2)$ space solution
• Let H be universal and $M = n^2$. Then just pick a random h from H and try it out!

• Claim: If H is universal and $M = n^2$, then $Pr_{h \sim H}(no \ collisions \ in \ S) \geq 1/2$
Naïve method: $O(n^2)$ space

• Proof:
 • How many pairs (x,y) in S are there? Answer:
 • For each pair, the chance they collide is $\leq 1/M$ by definition of “universal”
 • So, $\Pr(\text{exists a collision}) \leq n(n-1)/2M = n(n-1)/2n^2 < 1/2$. (by union bound)
An O(n) space solution (for static S)

- first hash into a table of size n using universal hashing. This will produce some collisions (unless we are extraordinarily lucky)
- then rehash each bin using Method 1, squaring the size of the bin to get zero collisions

Formally:
- a first-level hash function h and first-level table A,
- n second-level hash functions h_1, \ldots, h_n and n second-level tables A_1, \ldots, A_n
- To lookup an element x, we first compute $i = h(x)$ and then find the element in $A_i[h_i(x)]$.
- We omit the analysis of this method.
Dynamic S?

• Cuckoo hashing
 • Linear space
 • Constant lookup time

• Pagh, Rasmus; Rodler, Flemming Friche (2001). "Cuckoo Hashing". *Algorithms — ESA 2001*
Summary

• Today’s lecture
 • Multi-field index key in hash index
 • How to construct a good hash function