CSE462/562: Database Systems (Spring 22)
Lecture 14: Join algorithms
4/7/2022
Joins

• Joins are very common
 • need to reconstruct complete rows due to schema normalization
 • collecting correlated data (e.g., sliding window on timestamps, spatial joins, etc.)

• Joins are very expensive!
 • join results can be as large as the cartesian product
 • but they are usually far from the full cartesian product
 • can we avoid evaluating the full cartesian product?

• Many approaches to reduce join cost
 • Nested-loop join (simple/block/indexed)
 • Sort-merge join
 • Hash join (basic hash partitioning vs hybrid hashing)
Running example

• A quick recap on our running example

• Notations: for relation R
 • T_R: number of records, N_R: number of pages in its heap file, B_R: (average) number of tuples per page
 • h_I: height of a B-tree index I over the file
 • M: private workspace size in pages

• Running example
 • $t_S = 4\ms, t_T = 0.1\ms, 4000$-byte page
 • Student: $R(\text{sid}: \text{int}, \text{name}: \text{varchar(19)}, \text{login}: \text{varchar(19)}, \text{major}: \text{char(2)}, \text{adm_year}: \text{int})$
 • 50 bytes/tuple, $B_R = 80, T_R = 40,000, N_R = 500$
 • Enrollment: $E(\text{sid}: \text{int}, \text{semester}: \text{char(3)}, \text{cno}: \text{int}, \text{grade}: \text{double})$
 • 20 bytes/tuple, $B_E = 200, T_E = 200,000, N_E = 1000$
 • Consider the equi-join $R \bowtie_{R.\text{sid}=E.\text{sid}} E$ (denote the join predicate $R.\text{sid} = E.\text{sid}$ as θ)
 • R is called the outer relation, E is called the inner relation
 • cost = #seeks $\times t_S + $#page_transfers $\times t_T$
 • ignoring buffer effect; not counting the final output
Simple nested-loop join

- For each tuple in the outer relation R,
 - scan the entire inner relation S

```plaintext
foreach tuple $r$ in $R$ do
  foreach tuple $e$ in $E$ do
    if ($r$, $e$) satisfies $\theta$ then
      emit $r \circ e$ as result
```

- Simple nested-loop join evaluates the full cartesian product
 - only keep those pairs that satisfy the predicate

- Cost? depends on the available memory
 - If $M = 2$, we’ll have to read every pages in the inner relation once for every tuple in the outer relation
 - number of pages to read: $N_R + T_R N_E$
 - number of seeks: $N_R + T_R$ (one seek for every page in R, and one seek for every scan of E)
 - cost = $t_T (N_R + T_R N_E) + t_S (N_R + T_R)$
 - running example: $\text{cost}(R \bowtie E) \approx 4162 \text{ s} \approx 1.15 \text{ hr}$
 - What about $\text{cost}(E \bowtie R)$?
 - $t_T (N_E + T_E N_R) + t_S (N_E + T_E) \approx 10804 \text{ s} \approx 3 \text{ hr}$
Simple nested-loop join

• For each tuple in the outer relation R,
 • scan the entire inner relation S

 foreach tuple r in R do
 foreach tuple e in E do
 if (r, e) satisfies θ then
 emit $r \circ e$ as result

• Simple nested-loop join evaluates the full cartesian product
 • only keep those pairs that satisfy the predicate

• Cost? depends on the available memory
 • If $M = 2$, cost = $t_T(N_R + T_RN_E) + t_S(N_R + T_R)$
 • If $M \geq N_E + 2$, we can cache the inner relation E in memory
 • number of pages to read: $N_R + N_E$
 • number of seeks: 2 (scanning E in full, followed by scan of R)
 • cost = $t_T(N_R + N_E) + 2t_S = 0.158 s$
 • How to fully utilize the memory if $3 \leq M < N_E + 2$?

$\theta: S.sid = E.sid$
Block nested-loop join

- For each block for the outer relation S and every block of the inner relation E,
 - first assume each block is a page
 - emit the pairs of records (r, s) that satisfy the join predicate θ

\[
\text{foreach block } B_S \text{ in } S \text{ do}
\text{foreach block } B_E \text{ in } E \text{ do}
\text{foreach tuple } r \text{ in } B_S \text{ do}
\text{foreach tuple } e \text{ in } B_E \text{ do}
\text{if } (r, e) \text{ satisfies } \theta \text{ then}
\text{emit } r \circ e \text{ as result}
\]

- Block nested-loops only reads each page in the outer relation once
 - Cost $= t_T (N_R + N_R N_E) + 2t_S N_R = 54.5 \text{ s (block nested-loop)} \text{ vs } 1.15 \text{ hr (simple nested loop)}$
 - What about $E \bowtie S$?
 - cost $= 58.1 \text{ s -- use smaller relation as the outer relation}$

$\theta: S.\text{sid} = E.\text{sid}$
Block nested-loop join

- For each block for the outer relation S and every block of the inner relation E,
 - first assume each block is a page
 - emit the pairs of records (r, s) that satisfy the join predicate θ

\[
\text{foreach block } B_S \text{ in } S \text{ do} \\
\text{foreach block } B_E \text{ in } E \text{ do} \\
\text{foreach tuple } r \text{ in } B_S \text{ do} \\
\text{foreach tuple } e \text{ in } B_E \text{ do} \\
\quad \text{if } (r, e) \text{ satisfies } \theta \text{ then} \\
\quad \text{emit } r \circ e \text{ as result}
\]

- Block nested-loops only reads each page in the outer relation once
 - Cost = $t_T (N_R + N_R N_E) + 2t_S N_R = 54.5 \, s$ (block nested-loop) vs 1.15 hr (simple nested loop)
 - Only uses 3 buffer frames. What about $M > 3$ buffer frames?
 - Read every $M - 2$ pages at a time for the outer relation, i.e., $|B_S| = M - 2$
 - cost = $t_T \left(N_R + \left\lceil \frac{N_R}{M-2} \right\rceil N_E \right) + 2t_S \left\lceil \frac{N_R}{M-2} \right\rceil$
 - $M = 12 \Rightarrow \text{cost} = 5.45 \, s$, $M = 102 \Rightarrow \text{cost} = 0.59 \, s$
 - caveat: CPU cost may not be negligible when I/O cost is low for NL/BNL
Index nested-loop join

- If there’s an index over the inner relation’s join attribute (e.g., $E.sid$)
 - only fetch records with matching values in the join attribute using the index

  ```
  foreach block $B_S$ in $S$ do
    foreach tuple $r$ in $B_S$ do
      foreach tuple $e$ in $B_E$ s.t. $S.sid = E.sid$ do
        emit $r \circ e$ as result
  ```

- Assuming heap scan over the outer relation S and block size $|B_S| = 1$
 - cost $= N_R(t_S + t_R) + T_R \times c$
 - where c is the average time for scanning all the matching record for a tuple $r \in R$
 - c depends on
 - selectivity s_E or join degree $d = s_E N_E$
 - special case foreign-key join: $d = 1$ or $s_E = 1/N_E$
 - clustered vs unclustered index
 - data entry alternatives
Index nested-loop join

• If there’s an index over the inner relation’s join attribute (e.g., \(E.sid\))
 • only fetch records with matching values in the join attribute using the index

```javascript
foreach block \(B_S\) in \(S\) do
  foreach tuple \(r\) in \(B_S\) do
    foreach tuple \(e\) in \(B_E\) s.t. \(S.sid = E.sid\) do
      emit \(r \circ e\) as result
```

• Assuming heap scan over the outer relation \(S\) and block size \(|B_S| = 1\)
 • cost = \(N_R(t_S + t_R) + T_R \times c\)
 • where \(c\) is the average time for scanning all the matching record for a tuple \(r \in R\)
 • \(c\) depends on
 • selectivity \(s_E\) or join degree \(d = s_E N_E\)
 • special case foreign-key join: \(d = 1\) or \(s_E = 1/N_E\)
 • clustered vs unclustered index
 • data entry alternatives

\(\theta: S.sid = E.sid\)
Index nested-loop join

• $R \bowtie_{S.sid=E.sid} E$
 • BNL cost = 54.5 s

• Example 1: E as inner, B-Tree index over $E(sid)$, alternative 2, clustered, height $h = 3$
 • assuming uniformity, average join degree $d = \frac{T_E}{T_R} = 5$
 • for each inner table scan, h random I/Os for tree search, 1 seek and $\left\lfloor \frac{d}{B_E} \right\rfloor = 1$ heap pages read
 • $c = h(t_S + t_T) + t_S + \left\lfloor \frac{d}{B_E} \right\rfloor t_T = 16.1$ ms
 • total = $N_R(t_S + t_R) + T_R \times c = 646.05$ s

• Example 2: E as inner, B-Tree index over $E(sid)$, alternative 2, unclustered, height $h = 3$
 • still $d = 5$
 • for each inner table scan, h random I/Os for tree search, 5 random I/Os for reading 5 heap records
 • $c = h(t_S + t_T) + d(t_S + t_T) = 32.8$ ms
 • total = $N_R(t_S + t_R) + T_R \times c = 1314.05$ s
Index nested-loop join

- Now consider $\sigma_{adm_year=2021} R \bowtie_{S.sid=E.sid} E$, assuming selectivity of $adm_year = 2021$ is $s = 0.001$
 - suppose we have an unclustered B-Tree index over $R(adm_year)$, $h_1 = 2$
 - can use the index to find all the $[sT_R] = 40$ records
 - Using nested loop for join, need to scan the inner for every $s \in \sigma_{adm_year=2021}$
 - cost = $(h_1 + [sT_R])(t_S + t_T) + [sT_R](t_S + t_TN_E) \approx 4.33s$
- Example 3: E as inner, B-Tree index over $E(sid)$, alternative 2, clustered, height $h = 3$, $d = 5$
 - for each inner table scan, h random I/Os for tree search, 1 seek and $\left\lfloor \frac{d}{B_E} \right\rfloor = 1$ heap pages read
 - $c = h(t_S + t_T) + t_S + \left\lfloor \frac{d}{B_E} \right\rfloor t_T = 16.1 ms$
 - total = $(h_1 + [sT_R])(t_T + t_S) + [sT_R] \times c \approx 0.82s$
- Example 4: E as inner, B-Tree index over $E(sid)$, alternative 2, unclustered, height $h = 3$, $d = 5$
 - for each inner table scan, h random I/Os for tree search, 5 random I/Os for reading 5 heap records
 - $c = h(t_S + t_T) + d(t_S + t_T) = 32.8 ms$
 - total = $(h_1 + [sT_R])(t_T + t_S) + [sT_R] \times c \approx 1.48 s$
Sort-merge join

- Idea: sort R on $R.\text{sid}$ and sort E on $E.\text{sid}$
 “merge” them and emit the pairs with matching values on the join columns
- Useful if
 - One or both relations are already sorted on the join attributes
 - If not, sort them using external sorting algorithms – this may still be cheaper than BNL
 - Output should be sorted on the join attributes
 - e.g., `SELECT * from R, E WHERE R.\text{sid} = E.\text{sid} ORDER BY R.\text{sid}`
- Algorithm sketch:
 - Naïve version:

```plaintext
pr = address of first tuple in R
pe = address of first tuple in E
done = false
while (not done && pe != end && pr != end) do
  if (pe->\text{sid} != pr->\text{sid})
    if pe->\text{sid} < pr->\text{sid} then ++pe else ++pr
    continue
  pr2 = first address after pr such that pr2 == end || pr2->\text{sid} != pr->\text{sid}
  pe2 = first address after pe such that pe2 == end || pe2->\text{sid} != pe->\text{sid}
  emit all pairs between [pr, pr2) and [pe, pe2)
  pe = pe2; pr = pr2;
```

$S \bowtie_{S.\text{sid}=E.\text{sid}} E$
Sort-merge join

- Sort-merge join: naïve version
 - Problem?

student

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>major</th>
<th>adm_year</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alice</td>
<td>alicer34</td>
<td>CS</td>
<td>2021</td>
</tr>
<tr>
<td>101</td>
<td>Bob</td>
<td>bob5</td>
<td>CE</td>
<td>2020</td>
</tr>
<tr>
<td>102</td>
<td>Charlie</td>
<td>charlie7</td>
<td>CS</td>
<td>2021</td>
</tr>
<tr>
<td>103</td>
<td>David</td>
<td>davel</td>
<td>CS</td>
<td>2020</td>
</tr>
</tbody>
</table>

enrollment

<table>
<thead>
<tr>
<th>sid</th>
<th>semester</th>
<th>cno</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>s22</td>
<td>562</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>f21</td>
<td>560</td>
<td>3.7</td>
</tr>
<tr>
<td>101</td>
<td>s21</td>
<td>560</td>
<td>3.3</td>
</tr>
<tr>
<td>101</td>
<td>f21</td>
<td>560</td>
<td>3.3</td>
</tr>
<tr>
<td>102</td>
<td>s22</td>
<td>562</td>
<td>2.3</td>
</tr>
<tr>
<td>102</td>
<td>f21</td>
<td>560</td>
<td>4.0</td>
</tr>
<tr>
<td>103</td>
<td>s22</td>
<td>460</td>
<td>2.7</td>
</tr>
<tr>
<td>103</td>
<td>f21</td>
<td>250</td>
<td>4.0</td>
</tr>
</tbody>
</table>

\[
S \bowtie_{S.sid = E.sid} E
\]
Sort-merge join

- Sort-merge join: naïve version
 - Problem? each matched group is scanned for an additional pass

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>major</th>
<th>adm_year</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alice</td>
<td>alice34</td>
<td>CS</td>
<td>2021</td>
</tr>
<tr>
<td>101</td>
<td>Bob</td>
<td>bob5</td>
<td>CE</td>
<td>2020</td>
</tr>
<tr>
<td>102</td>
<td>Charlie</td>
<td>charlie7</td>
<td>CS</td>
<td>2021</td>
</tr>
<tr>
<td>103</td>
<td>David</td>
<td>davel</td>
<td>CS</td>
<td>2020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>semester</th>
<th>cno</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>s22</td>
<td>562</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>f21</td>
<td>560</td>
<td>3.7</td>
</tr>
<tr>
<td>101</td>
<td>s21</td>
<td>560</td>
<td>3.3</td>
</tr>
<tr>
<td>101</td>
<td>f21</td>
<td>560</td>
<td>3.3</td>
</tr>
<tr>
<td>102</td>
<td>s22</td>
<td>562</td>
<td>2.3</td>
</tr>
<tr>
<td>102</td>
<td>f21</td>
<td>560</td>
<td>4.0</td>
</tr>
<tr>
<td>103</td>
<td>s22</td>
<td>460</td>
<td>2.7</td>
</tr>
<tr>
<td>103</td>
<td>f21</td>
<td>250</td>
<td>4.0</td>
</tr>
</tbody>
</table>

$$S \bowtie_{S.sid=E.sid} E$$
Sort-merge join

- Idea: sort R on $R.sid$ and sort E on $E.sid$
 “merge” them and emit the pairs with matching values on the join columns

- Algorithm sketch:
 - How to ensure R is scanned once, each S group is scanned once per matching $r \in R$?

```c
pr = address of first tuple in R
pe = address of first tuple in E
done = false
while (not done && pe != end && pr != end) do
  if (*pe != *pr)
    if *pe < *pr then ++pe else ++pr
    continue
  key = pr->sid
  pe0 = pe
  while pr != end && pr->sid == key
    pe = pe0
    while pe != end && pe->sid == key
    emit *pr ∘ *pe; ++pe
    pe2 = pe; ++pr
  pe = pe2
```

A few caveats in actual implementation:
1. Need to restructure the algorithm to fit into volcano model (project 5)
2. Rewinding (setting to a previously saved pointer) on iterator may be expensive!
3. Handling NULLs (NULLs never compare equal)
Sort-merge join

- Cost analysis: sorting cost + merge cost, let $M = 110, B = 10, \frac{M}{B} = 11$
 - Sorting cost: $2T_N R \left(\left\lfloor \log_{\frac{M}{B}} \left\lfloor \frac{N_R}{M} \right\rfloor - 1 \right\rfloor + 1 \right) + 2S \left(\left\lfloor \frac{N_R}{M} \right\rfloor + \left\lfloor \log_{\frac{M}{B}} \left\lfloor \frac{N_R}{M} \right\rfloor - 1 \right\rfloor \right) +$

 $2T_N E \left(\left\lfloor \log_{\frac{M}{B}} \left\lfloor \frac{N_E}{M} \right\rfloor - 1 \right\rfloor + 1 \right) + 2S \left(\left\lfloor \frac{N_E}{M} \right\rfloor + \left\lfloor \log_{\frac{M}{B}} \left\lfloor \frac{N_E}{M} \right\rfloor - 1 \right\rfloor \right)$
 - includes the cost of writing the sort results to two temporary files
 - running example: sorting cost = 0.64 + 1.28 $s = 1.92$ s
 - Merge cost: two scans over the temporary files
 - number of pages read: $N_R + N_E = 1500$ (assuming all 5 matching tuples of S are on the same page)
 - This could be up to $N_R + N_R N_E$ in extreme case (why?)
 - number of seeks? (depending on the block size)
 - If we fetch one page from R and E at a time, then $N_R + N_E = 1500$
 - If we fetch $b = \left\lfloor \frac{M}{2} - 1 \right\rfloor = 54$ pages at a time for both, then $\left\lfloor \frac{N_R}{b} \right\rfloor + \left\lfloor \frac{N_E}{b} \right\rfloor = 10 + 19 = 29$
 - running example: cost = 6 s (one page at a time) or 0.112 s (54 pages at a time)
 - Total cost: $\approx 7.92 s$ (one page at a time) or 2.03 s (54 pages at a time)
Sort-merge join

• In practice, the cost of sort-merge join for an equi-join is usually linear to the relation sizes
 • assuming we have a large enough buffer for sorting everything in two passes
 • can even combine the merge phase of external sorting with the merge phase in sort-merge join (i.e., pipelining)

• Question: how large the tables can be in order to complete the sort-merge join in two passes? (minimal needed for sort-merge joins)
 • For simplicity, let $B = 1$
 • Let $N = \max(N_R, N_S)$, we need $\log_{M-1} \left(\frac{N}{M} \right) \leq 1 \Rightarrow \text{roughly } N \leq M^2 - M$
 • In other words, to perform a sort-merge join in two passes
 • the buffer size $M \geq 0.5 + \sqrt{N} + 0.25 = O\left(\sqrt{N}\right)$
 • good enough to use $\sqrt{N} + c$ for some small constant c in practice
 • Exercise: $B > 1$?
Hash join

• Idea: build a hash table on inner relation E over join attribute E
 • Scan the outer relation and probe the hash table

 Build a hash table over E with hash function h_r
 foreach tuple s in S do
 probe the hash table for all the matching e in E
 and emit the join results

 • However, the hash table might be too large to fit in memory.
 • Extendible hashing/linear hashing have overhead for dynamic updates
 • not suitable for QP purpose

• Solution: partitioning using a hash function h_p
Hash join

- Two phases
 - Partitioning
 - Partitioning both outer S and inner E using the same hash function h_p
 - Rehashing and probing
 - load a partition for the inner E, rehash using a different hash function h_r and build a hash table
 - scan the partition of the outer S with the same hash value for h_p and probe the in-memory hash table
Hash join

• What if a partition won’t fit into memory in the rehashing phase?
 • *Recursive partitioning!*
 • In the rehash and probe phase, if both partitions with the same hash value are larger than $M - 2$
 • recursively partition them as if they were the original relations to be joined
 • use a different partitioning hash function h'_p
 • Assuming there’s no recursive partitioning
 • Cost of partitioning on R and E:
 $$2t_T N_R + 2t_S N_R + 2t_T N_E + 2t_S N_E$$
 • can also use larger blocks B to reduce the number of seeks to
 $$\frac{2N_R}{B} + \frac{2N_E}{B}$$
 • Cost of rehashing and probing:
 $$t_T N_E + t_T N_R + 2t_S \left\lfloor \frac{M}{B} - 1 \right\rfloor$$
 => linear to relation sizes
 • total cost is roughly the cost of scanning both relations for three times
 • running example: $M = 100, B = 10 \Rightarrow \text{cost} \approx 1.72 \text{ s}$;
 • $M = 1000, B = 10 \Rightarrow \text{cost} \approx 13.2 \text{ s} (!)$
 • How big of a table can we hash in one pass? assuming $B = 1$
 • $M - 1$ partitions in Phase 1
 • Each should be no more than M page large
 • Answer: $(M-2)(M-1)$ – assuming uniformity among the keys
 • i.e., we can do hash join in one pass in about $O(\sqrt{N_E})$ space
 • Much like sorting, but only dependent on the *inner relation size (usually the smaller one)*
 • Do need to use $c \sqrt{N_E}$ in practice in case of key skews
 • Exercise: $B > 1$?
Hybrid Hashing

• Can we do it better when both relations fit in memory?
 • In-memory hash join can finish in 1 scan instead of 3!

• Hybrid hashing
 • Idea: keep a small 1st partition (of size k) in memory in the partitioning phase
 • directly scan and probe the keys in the 1st partition after partitioning of the inner relation finishes
Hybrid hashing

- Assume we have the hash-partition function $h_p : X \rightarrow [M - k - 1]$ (X is the domain of the key, i.e., the join column)
- Define h_h as follows: (technically, it is determined by the sequence of the keys)
 - $h_h(x) = 1$ if in-memory hash table is not yet full
 - $h_h(x) = 1$ if x is already in the hash table
 - $h_h(x) = h_p(x) + 1$ otherwise
- This ensures that:
 - Bucket 1 fits in k pages of memory
 - If the entire set of distinct hash table entries is smaller than k, there is not spilling!

- During partitioning of the outer S
 - If $h_h(s. sid) = 1$
 - probe the in-memory hash table and emit join results directly
 - Otherwise,
 - write s to its partition
- Only enter the rehashing and probing phase if there is any spill
- Running example
 - $M = 1000, k = 900$
 - Cost $= 2t_S + t_T(N_R + N_E) \approx 0.15s$
Hashing for single-table ops

- Recursive hashing and hybrid hashing can also be applied to aggregation and deduplication operators
 - Instead of rehashing and probing
 - We only rehash each partition and maintain aggregates/distinct values
 - Cost analysis is similar to hash joins
Summary

• This lecture
 • Join algorithms
 • Nested loop (simple/block/index)
 • Sort-merge join
 • Hash join

• Next lecture
 • Project 4 overview
 • To be released on Sunday, 4/10
 • Query optimization

 • HW4 (graded) will be released next Tuesday, 4/12
 • submission due in one week, 4/19
 • submit to UBLearns