Query processing overview

Query result
S.name | E.grade
Alice | 4.0
Charlie| 2.3
(2 rows)

ODBC/JDBC/command line frontend

SQL Query
SELECT S.name, E.grade
FROM student S, enrollment E
WHERE S.sid = E.sid
 AND S.adm_year = 2021
 AND E.cno = 562;

Query Execution

Physical plan
- Index Scan student S
- Index Scan enrollment E
- Index Nested Loop Join
- \(\pi_{S.name, E.grade} \)
- \(\sigma_{S.adm_year=2021 \land E.cno=562} S \bowtie_{S.sid=E.sid} E \)

Logical plan
- \(\pi_{S.name, E.grade} \)
- \(\sigma_{S.adm_year=2021 \land E.cno=562} S \bowtie_{S.sid=E.sid} E \)

* include multiple intermediate steps (e.g., parsing tree/analysis/rewriting)

This picture by oksmith is licensed under CC0
Query optimization overview

- Query can be converted to relational algebra
- Relational Algebra converted to tree, joins as branches
- Each operator has implementation choices
- Operators can also be applied in different order!

```
SELECT R.name
FROM Enroll E, Students R
WHERE E.sid=R.sid AND E.cno>=500 AND R.adm_year = 2020
```
Query optimization overview

- **Plan:** Tree of R.A. ops (and some others) with choice of algorithm for each op.
 - Each operator typically implemented using a `pull` interface: when an operator is `pulled` for the next output tuples, it `pulls` on its inputs and computes them.

- Two main issues:
 - For a given query, **what plans are considered?**
 - Algorithm to search plan space for cheapest (estimated) plan.
 - How is the **cost of a plan estimated?**

- **Ideally:** Want to find best plan.

- **Reality:** Avoid worst plans!

Relational operators at nodes support uniform *iterator* interface:

```
open( ), get_next( ), close( )
```

\[
\begin{align*}
\pi_{R.name} & \\
\sigma_{E.cno \geq 500 \land R.adm_year = 2020} & \\
\bowtie_{E.sid = R.sid} & \\
Enroll\ E & \\
Students\ R
\end{align*}
\]
Cost-based query optimizer

Usually there is a heuristics-based rewriting step before the cost-based steps.

```
Select *
From Blah B
Where B.blah = blah
```
Running example

- Notations: for relation R
 - T_R: number of records, N_R: number of pages in its heap file, B_R: (average) number of tuples per page
 - h_I: height of a B-tree index I over the file
 - M: private workspace size in pages

- Running example
 - Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)
 - 50 bytes/tuple, $B_R = 80$, $T_R = 40,000$, $N_R = 500$
 - Assume the student records in the table span 10 years (between 2012 and 2022)
 - Enrollment: E(sid: int, semester: char(4), cno: int, grade: double)
 - 20 bytes/tuple, $B_E = 200$, $T_E = 200,000$, $N_E = 1000$
 - Assume 50% of the enrollment records belong to the graduate level (≥ 500) courses

- Consider a simplified cost model: $cost = \# \text{page_transfers}$ (i.e., ignoring the random seeks)
 - Often good enough for approximating the trend of the cost relative to data size
 - Correct size estimation is key to a correct comparison of costs

- Assume we have 5 pages in the buffer
Motivating example

```
SELECT R.name
FROM Enroll E, Students R
WHERE E.sid = R.sid AND
    E.cno = 562 AND R.adm_year = 2020
```

- By no means the worst plan!
- Misses several opportunities: selections could have been `pushed' earlier, no use is made of any available indexes, etc.
- **Goal of optimization:** To find more efficient plans that compute the same answer.

Cost = 1000 + 1000 * 500 = 501,000 I/Os
Relational algebra equivalence

- Rules that allow the optimizer to transform a logical plan into an equivalent plan with the same output over any database instance

Selections:
- Cascade: $\sigma_{\theta_1 \land \theta_2} E \equiv \sigma_{\theta_1} \sigma_{\theta_2} E$
- Commutative: $\sigma_{\theta_1} \sigma_{\theta_2} E \equiv \sigma_{\theta_2} \sigma_{\theta_1} E$

Projections:
- Cascade: $\pi_{A_1} \pi_{A_2} \cdots \pi_{A_n} E \equiv \pi_{A_1}(E)$ where $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n$
 - Only need to perform the final projection in a sequence of projections

(Inner) Joins or Cartesian product:
- Commutative: $E_1 \bowtie_{\theta} E_2 \equiv E_2 \bowtie_{\theta} E_1$ (allows switching the inner and outer)
- Associative
 - Special case natural join: $(E_1 \bowtie E_2) \bowtie E_3 \equiv E_1 \bowtie (E_2 \bowtie E_3)$
 - General theta join: $(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \land \theta_3} E_3 \equiv E_1 \bowtie_{\theta_1 \land \theta_3} (E_2 \bowtie_{\theta_2} E_3)$
- Implication: inner joins can be done in any order!
 - **Join reordering**: an important optimization step in DBMS

θ_2 only involves fields in E_2 and E_3
Relational algebra equivalence

• Rules for more than one operator
 • *Selection can be combined with inner join/cartesian product*
 \[\sigma_{\theta_1} (E_1 \bowtie_{\theta_2} E_2) \equiv E_1 \bowtie_{\theta_1 \land \theta_2} E_2 \]

 • **Projection push-down:** select/join and projection commutes (provided that the predicate only involves the projected fields)
 \[\pi_A \sigma_{\theta} E \equiv \sigma_{\pi_A E} \text{ when } \text{Var}(\theta) \subseteq A \]
 \[\pi_{A_1 \cup A_2} (E_1 \bowtie \theta E_2) \equiv \pi_{A_1} E_1 \bowtie \pi_{A_2} E_2 \text{ when } \text{Var}(\theta) \subseteq A_1 \cup A_2 \text{ and } A_1, A_2 \text{ only involve fields from } E_1, E_2, \text{ resp.} \]

 • **Selection push-down:** join and select commutes (provided that the selection predicate only involves attributes from one side)
 \[\pi_{\theta_1} (E_1 \bowtie_{\theta} E_2) \equiv \pi_{\theta_1 E_1} \bowtie_{\theta} E_2 \text{ when } \text{Var}(\theta_1) \subseteq A(E_1) \text{ (set of fields in } E_1) \]

 • More rules about other operators, e.g., aggregation, set operations, sort, ...

• Note: rules involving outer joins may be different
 • Exercise: Can we always push selection through outer joins? What about projections?
Selection push-down (no index)

- Heuristics 1: perform selections as early as possible
 - Selection is often very cheap or “free” (in I/O only cost model)
 - reduces intermediate size

\[
\sigma_{E.cno \geq 500 \land R.adm_year=2020} \bowtie_{E.sid=R.sid} \pi_{R.name} (Block\ nested\ loop) \quad (On-the-fly)
\]

\[
\sigma_{R.adm_year=2020} \pi_{R.name} (On-the-fly)
\]

Enroll E

\[
\sigma_{E.cno \geq 500} (On-the-fly)
\]

Students R

\[
\nabla_{E.sid=R.sid} (Block\ nested\ loop)
\]

Students R

Collect one page from the outer plan, rather than the underlying scan.

Cost = 501,000 I/Os

Enroll E

Cost = \[1000 + [1000 \times 0.5] \times 500 = 251,000\ I/Os\]
Selection push-down (no index)

- Can also push-down on the other side

\[
\begin{align*}
\text{Enroll } E \\
\pi_{R.name} \\
\sigma_{R.adm_year=2020} \\
\Join_{E.sid=R.sid} \\
\sigma_{E.cno\geq 500} \\
\text{Students } R
\end{align*}
\]

\[
\begin{align*}
\text{Enroll } E \\
\sigma_{R.adm_year=2020} \\
\Join_{E.sid=R.sid} \\
\sigma_{E.cno\geq 500} \\
\pi_{R.name} \\
\text{Students } R
\end{align*}
\]

Cost = 251,000 I/Os

Cost = 251,000 I/Os

No impact on I/O because BNL scans the inner plan once for every outer block.
Join reordering

- Different join ordering may result in different cost
 - even if we use the same join algorithm
 - *Generally, the outer plan should have a smaller output in BNL*
 - what about hash join/sort merge join?

\[
\begin{align*}
\pi_{R.name} & \bowtie_{E.sid = R.sid} (Block\,\, nested\,\, loop) \\
& \sigma_{E.cno \geq 500} (On-the-fly) \\
& \sigma_{E.cno \geq 500} (On-the-fly) \\
& (On-the-fly)
\end{align*}
\]

\[
\begin{align*}
\pi_{R.name} & \bowtie_{E.sid = R.sid} (Block\,\, nested\,\, loop) \\
& \sigma_{R.adm_year = 2020} (On-the-fly) \\
& \sigma_{R.adm_year = 2020} (On-the-fly) \\
& (On-the-fly)
\end{align*}
\]

Cost = 251,000 I/Os

Cost = 500 + [500 \times 0.1] \times 1000 = 50,500 I/Os
Materialization of inner plan

- We can also choose to materialize the inner plan for BNL to save repeated scan on the original relation

```
π_{R.name} (On-the-fly)
\bowtie_{E.sid=R.sid} (Block nested loop) ∏_{R.name} (On-the-fly)
σ_{R.adm_year=2020} (On-the-fly) π_{R.name} (On-the-fly)
σ_{E.cno\geq500} (On-the-fly) σ_{R.adm_year=2020} (On-the-fly)
students R (On-the-fly)
```

Cost = 50,500 I/Os

```
π_{R.name} (On-the-fly)
\bowtie_{E.sid=R.sid} (Block nested loop) ∏_{R.name} (On-the-fly)
σ_{R.adm_year=2020} (On-the-fly) π_{R.name} (On-the-fly)
σ_{E.cno\geq500} (materialize in temporary file) (On-the-fly)
students R (On-the-fly)
```

Cost = \[1000 + [1000 \times 0.5] + 500 + [500 \times 0.1] \times [1000 \times 0.5] = 27,000 \text{ I/Os}\]

BNL outer scan

BNL inner scan

materializing inner plan

Materialization of inner plan

- Sometimes with materialization, it might be cheaper to use the larger plan as the outer

\[
\begin{align*}
\pi_{\text{R.name}} & \quad \text{(On-the-fly)} \\
\bowtie_{E.\text{sid}=R.\text{sid}} & \quad \text{(Block nested loop)} \\
\sigma_{\text{R.adm}_\text{year}=2020} & \quad \text{(On-the-fly)} \\
\sigma_{E.\text{cno}\geq 500} & \quad \text{(materialize in temporary file)} \\
\end{align*}
\]

\[
\begin{align*}
\pi_{\text{R.name}} & \quad \text{(On-the-fly)} \\
\bowtie_{E.\text{sid}=R.\text{sid}} & \quad \text{(Block nested loop)} \\
\sigma_{E.\text{cno}\geq 500} & \quad \text{(materialize in temporary file)} \\
\sigma_{\text{R.adm}_\text{year}=2020} & \quad \text{(On-the-fly)} \\
\end{align*}
\]

Students R

Enroll E

\[\text{Cost} = 1000 + [1000 \times 0.5] + 500 + [500 \times 0.1] \times [1000 \times 0.5] = 27,000 \text{ I/Os}\]

Students R

Enroll E

\[\text{Cost} = 500 + [500 \times 0.1] + 1000 + [1000 \times 0.5] \times [500 \times 0.1] = 26,550 \text{ I/Os}\]
Projection push-down

- Heuristics 2: apply projection as early as possible
 - helps if materializing plan output

Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

20 bytes/tuple => $\pi_{E.sid} \cdot \frac{4}{20} = 20\%$ in size after projection

Cost = $1000 + [1000 \times 0.5] + 500 + [500 \times 0.1] \times [1000 \times 0.5]
= 27,000 I/Os

Cost = $1000 + [1000 \times 0.5 \times 0.2] + 500 + [500 \times 0.1] \times [1000 \times 0.5 \times 0.2]
= 6,600 I/Os
Projection push-down

• More projection push-down on the other side

\[R(\text{sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int}) \]

\[50 \text{ bytes/tuple} \Rightarrow \pi_{R.\text{name},R.\text{sid}} : \frac{4+19+1}{50} = 48\% \text{ -- assuming VARCHAR uses ‘\0’ at the end} \]

\[\sigma_{R.\text{adm_year}=2020} \]

\[\pi_{E.\text{name}} \]

\(E.\text{sid}=R.\text{sid} \)

\[\sigma_{E.\text{cno}\geq500} \]

\(E.\text{sid} \)

\(\pi_{R.\text{name}} \)

(On-the-fly)

(On-the-fly)

(Block nested loop)

(Block nested loop)

(On-the-fly)

(On-the-fly)

(On-the-fly)

(On-the-fly)

Students \(R \)

Students \(R \)

Enroll \(E \)

Enroll \(E \)

\[\text{Cost} = 1000 + [1000 \times 0.5 \times 0.2] \]
\[+ 500 + [500 \times 0.1] \times [1000 \times 0.5 \times 0.2] \]
\[= 6,600 \text{ I/Os} \]

\[\text{Cost} = 1000 + [1000 \times 0.5 \times 0.2] \]
\[+ 500 + [500 \times 0.1 \times 0.48] \times [1000 \times 0.5 \times 0.2] \]
\[= 4,000 \text{ I/Os} \]
Choice of join algorithms

- If we switch to sort-merge join with 5 buffers

\[
\begin{align*}
\text{Students } R & \quad \text{Enroll } E \\
\sigma_{R.\text{adm_year}=2020} & \quad \pi_{R.\text{name},R.\text{sid}} \\
\sigma_{E.\text{cno} \geq 500} & \quad \pi_{E.\text{sid}} \\
\mathcal{X}_{E.\text{sid}=R.\text{sid}} & \quad (\text{Block nested loop}) \\
\pi_{R.\text{name}} & \quad (\text{On-the-fly}) \\
\end{align*}
\]

\[
\begin{align*}
\text{Students } R & \quad \text{Enroll } E \\
\sigma_{R.\text{adm_year}=2020} & \quad \pi_{R.\text{name},R.\text{sid}} \\
\sigma_{E.\text{cno} \geq 500} & \quad \pi_{E.\text{sid}} \\
\mathcal{X}_{E.\text{sid}=R.\text{sid}} & \quad (\text{Merge Join}) \\
\pi_{R.\text{name}} & \quad (\text{Materialization}) \\
\end{align*}
\]

\[
\begin{align*}
\text{Cost} & = 1000 + [1000 \times 0.5 \times 0.2] \\
& + 500 + [500 \times 0.1 \times 0.48] \times [1000 \times 0.5 \times 0.2] \\
& = 4,000 \text{ I/Os}
\end{align*}
\]

\[
\begin{align*}
\text{Cost} & = ?
\end{align*}
\]
Choice of join algorithms

- Sort outer:
 - Size after pass 0: \([500 \times 0.1 \times 0.48] = 24\)
 - 4 pages/run, 6 runs
 (need one input buffer for table scan)
 - # merge passes = \([\log_4 6]\) = 2
 - Total I/O: 500 + 24 + 2 \times 2 \times 24 = 620
- Sort inner: # I/O = 1700
- Merge
 - assuming \(d = 5\) and always fit in one page
 - \(24 + 100 = 124\)

- Total cost = 620 + 1700 + 124 = 2,444 I/Os
 - vs BNL: 4,000 I/Os

Cost = ?
Using indexes

- If we have a clustered B-Tree index over $R(\text{adm}_\text{year})$, $h = 3$

```
Cost = 1000 + [1000 \times 0.5 \times 0.2] \\
+ 3 + [500 \times 0.1 \times 0.48] \\
+ [500 \times 0.1 \times 0.48] \times [1000 \times 0.5 \times 0.2] \\
= 3,527 \text{ I/Os}
```
Using indexes

• If we have an unclustered B-Tree index over $E(sid)$, $h = 3$
 • Generally, index nested loop is a bad choice unless both of the following is true
 • outer plan output size is small
 • join is very selective

Cost = $3 + [500 \times 0.1 \times 0.48] + [40000 \times 0.1] \times (3 + 5)$
 = 32,027 I/Os (vs 3,527 I/Os with BNL!)
What’s needed for query optimization?

- A closed set of operators
 - Relational ops (table in, table out)
 - Encapsulation based on iterators
- Plan space, based on
 - Based on relational equivalences
- Cost Estimation, based on
 - Cost formulas
 - Size estimation, based on
 - Catalog information on base tables
 - Selectivity (Reduction Factor) estimation
- A search algorithm
 - To sift through the plan space based on cost!
Summary

• Today’s lecture
 • Query optimization overview
 • Relational algebra equivalence
 • Query optimization is needed to ensure not-too-bad performance if not the best
 • Need to understand the impact of cost model/physical data layout/indexing for a given query

• Next lecture(s)
 • Plan size and cost estimation
 • How to search in the optimization space
 • System R style query optimizer