CSE462/562: Database Systems (Spring 23)

Lecture 17: Join algorithms

4/13/2023 & 4/18/2023
Joins

• Joins are very common
 • need to reconstruct complete rows due to schema normalization
 • collecting correlated data (e.g., sliding window on timestamps, spatial joins, etc.)

• Joins are very expensive!
 • join results can be as large as the cartesian product
 • but they are usually far from the full cartesian product
 • can we avoid evaluating the full cartesian product?

• Many approaches to reduce join cost
 • Nested-loop join (simple/block/indexed)
 • Sort-merge join
 • Hash join (basic hash partitioning vs hybrid hashing)
Running example

• A quick recap on our running example

• Notations: for relation R
 • T_R: number of records, N_R: number of pages in its heap file, B_R: (average) number of tuples per page
 • h_I: height of a B-tree index I over the file
 • M: private workspace size in pages

• Running example
 • $t_S = 4 \text{ms}$, $t_T = 0.1 \text{ms}$, 4000-byte page
 • Student: $R(\text{sid}: \text{int}, \text{name}: \text{varchar(19)}, \text{login}: \text{varchar(19)}, \text{major}: \text{char(2)}, \text{adm_year}: \text{int})$
 • 50 bytes/tuple, $B_R = 80$, $T_R = 40,000$, $N_R = 500$
 • Enrollment: $E(\text{sid}: \text{int}, \text{semester}: \text{char(3)}, \text{cno}: \text{int}, \text{grade}: \text{double})$
 • 20 bytes/tuple, $B_E = 200$, $T_E = 200,000$, $N_E = 1000$
 • Consider the equi-join $R \bowtie_{R.\text{sid}=E.\text{sid}} E$ (denote the join predicate $R.\text{sid} = E.\text{sid}$ as θ)
 • R is called the outer relation, E is called the inner relation
 • cost = $\#\text{seeks} \times t_S + \#\text{page_transfers} \times t_T$
 • ignoring buffer effect; not counting the final output
Simple nested-loop join

- For each tuple in the outer relation R,
 - scan the entire inner relation S

```plaintext
foreach tuple $r$ in $R$ do
  foreach tuple $e$ in $E$ do
    if $(r, e)$ satisfies $\theta$ then
      emit $r \circ e$ as result
```

- Simple nested-loop join evaluates the full cartesian product
 - only keep those pairs that satisfy the predicate

- Cost? depends on the available memory
 - If $M = 2$, we’ll have to read every pages in the inner relation once for every tuple in the outer relation
 - number of pages to read: $N_R + T_R N_E$
 - number of seeks: $N_R + T_R$ (one seek for every page in R, and one seek for every scan of E)
 - cost = $t_T(N_R + T_R N_E) + t_S(N_R + T_R)$
 - running example: $\text{cost}(R \bowtie E) \approx 4162 s \approx 1.15 hr$!
 - What about $\text{cost}(E \bowtie R)$?
 - $t_T(N_E + T_E N_R) + t_S(N_E + T_E) \approx 10804 s \approx 3 hr$

$\theta: R.sid = E.sid$
Simple nested-loop join

• For each tuple in the outer relation R,
 • scan the entire inner relation E

  ```
  foreach tuple r in R do
    foreach tuple e in E do
      if $(r, e)$ satisfies $\theta$ then
        emit $r \circ e$ as result
  ```

• Simple nested-loop join evaluates the full cartesian product
 • only keep those pairs that satisfy the predicate

• Cost? depends on the available memory
 • If $M = 2$, cost = $t_T(N_R + T_R N_E) + t_S(N_R + T_R)$
 • If $M \geq N_E + 2$, we can cache the inner relation E in memory
 • number of pages to read: $N_R + N_E$
 • number of seeks: 2 (scanning E in full, followed by scan of R)
 • cost = $t_T(N_R + N_E) + 2t_S = 0.158 s$

• How to fully utilize the memory if $3 \leq M < N_E + 2$?

$\theta : R.sid = E.sid$
Block nested-loop join

- For each block for the outer relation S and every block of the inner relation E,
 - first assume each block is a page
 - emit the pairs of records (r, e) that satisfy the join predicate θ

```plaintext
foreach block $B_R$ in R do
  foreach block $B_E$ in E do
    foreach tuple $r$ in $B_R$ do
      foreach tuple $e$ in $B_E$ do
        if $(r, e)$ satisfies $\theta$ then
          emit $r \circ e$ as result
```

- Block nested-loops only reads each page in the outer relation once
 - Cost = $t_T(N_R + N_R N_E) + 2 t_S N_R = 54.5$ s (block nested-loop) vs 1.15 hr (simple nested loop)
 - What about $E \bowtie S$?
 - cost = 58.1 s -- use smaller relation as the outer relation
Block nested-loop join

• For each block for the outer relation S and every block of the inner relation E,
 • first assume each block is a page
 • emit the pairs of records (r, e) that satisfy the join predicate θ

```c
foreach block $B_R$ in R do
  foreach block $B_E$ in E do
    foreach tuple $r$ in $B_R$ do
      foreach tuple $e$ in $B_E$ do
        if $(r, e)$ satisfies $\theta$ then
          emit $r \circ e$ as result
```

• Block nested-loops only reads each page in the outer relation once
 • Cost = $t_T(N_R + N_R N_E) + 2t_SN_R = 54.5$ s (block nested-loop) vs 1.15 hr (simple nested loop)
 • Only uses 3 buffer frames. What about $M > 3$ buffer frames?
 • Read every $M - 2$ pages at a time for the outer relation, i.e., $|B_S| = M - 2$
 • cost = $t_T\left(N_R + \left\lceil \frac{N_R}{M-2} \right\rceil N_E \right) + 2t_SN_R \left\lceil \frac{N_R}{M-2} \right\rceil$
 • $M = 12 \Rightarrow$ cost = 5.45 s, $M = 102 \Rightarrow$ cost = 0.59 s
 • caveat: CPU cost may not be negligible when I/O cost is low for NL/BNL

θ: $R.sid = E.sid$
Index nested-loop join

- If there’s an index over the inner relation’s join attribute (e.g., $E.sid$)
 - only fetch records with matching values in the join attribute using the index

$$\text{cost} = N_R(t_S + t_T) + T_R \times c$$
 - where c is the average time for scanning all the matching record for a tuple $r \in R$
 - c depends on
 - selectivity s_E or join degree $d = s_E T_E$
 - special case foreign-key join: $d = 1$ or $s_E = 1/T_E$
 - clustered vs unclustered index
 - data entry alternatives

```
foreach block $B_R$ in R do
  foreach tuple $r$ in $B_R$ do
    foreach tuple $e$ in $B_E$ s.t. $R.sid = E.sid$ do
      emit $r \circ e$ as result
```
Index nested-loop join

- \(R \bowtie_{R.sid=E.sid} E \)
 - BNL cost = 54.5 s

- Example 1: \(E \) as inner, B-Tree index over \(E(sid) \), alternative 2, clustered, height \(h = 3 \)
 - assuming uniformity, average join degree \(d = \frac{TE}{TR} = 5 \)
 - for each inner table scan, \(h \) random I/Os for tree search, 1 seek and \(\left\lfloor \frac{d}{BE} \right\rfloor = 1 \) heap pages read
 - \(c = h(t_S + t_T) + t_S + \left\lfloor \frac{d}{BE} \right\rfloor t_T = 16.1 \) ms
 - total = \(N_R(t_S + t_T) + TR \times c = 646.05 \) s

- Example 2: \(E \) as inner, B-Tree index over \(E(sid) \), alternative 2, unclustered, height \(h = 3 \)
 - still \(d = 5 \)
 - for each inner table scan, \(h \) random I/Os for tree search, 5 random I/Os for reading 5 heap records
 - \(c = h(t_S + t_T) + d(t_S + t_T) = 32.8 \) ms
 - total = \(N_R(t_S + t_T) + TR \times c = 1314.05 \) s
Index nested-loop join

- Now consider $\sigma_{adm_year=2021} R \bowtie_{R.sid=E.sid} E$, assuming selectivity of $adm_year = 2021$ is $s = 0.001$
 - suppose we have an unclustered B-Tree index over $R(adm_year)$, $h_1 = 2$
 - can use the index to find all the $[sT_R] = 40$ records
 - Using nested loop for join, need to scan the inner for every $s \in \sigma_{adm_year=2021}$
 - cost = $(h_1 + [sT_R])(t_s + t_T) + [sT_R](t_s + t_T N_E) \approx 4.33s$

- Example 3: E as inner, B-Tree index over $E(sid)$, alternative 2, clustered, height $h = 3$, $d = 5$
 - for each inner table scan, h random I/Os for tree search, 1 seek and $\left\lfloor \frac{d}{B_E} \right\rfloor = 1$ heap pages read
 - $c = h(t_s + t_T) + t_s + \left\lfloor \frac{d}{B_E} \right\rfloor t_T = 16.1 ms$
 - total = $(h_1 + [sT_R])(t_s + t_T) + [sT_R] \times c \approx 0.82s$

- Example 4: E as inner, B-Tree index over $E(sid)$, alternative 2, unclustered, height $h = 3$, $d = 5$
 - for each inner table scan, h random I/Os for tree search, 5 random I/Os for reading 5 heap records
 - $c = h(t_s + t_T) + d(t_s + t_T) = 32.8 ms$
 - total = $(h + [sT_R])(t_s + t_T) + [sT_R] \times c \approx 1.48s$
Sort-merge join

- Idea: sort R on $R.sid$ and sort E on $E.sid$
 “merge” them and emit the pairs with matching values on the join columns
- Useful if
 - One or both relations are already sorted on the join attributes
 - If not, sort them using external sorting algorithms – this may still be cheaper than BNL
 - Output should be sorted on the join attributes
 - e.g., SELECT * from R, E WHERE $R.sid = E.sid$ ORDER BY $R.sid$
- Algorithm sketch:
 - Naïve version:
    ```
    pr = address of first tuple in R
    pe = address of first tuple in E
    done = false
    while (not done && pe != end && pr != end) do
      if (pe->sid != pr->sid)
        if pe->sid < pr->sid then ++pe else ++pr
        continue
      pr2 = first address after pr such that pr2 == end || pr2->sid != pr->sid
      pe2 = first address after pe such that pe2 == end || pe2->sid != pe->sid
      emit all pairs between [pr, pr2) and [pe, pe2)
      pe = pe2; pr = pr2;
    ```
Sort-merge join

- Sort-merge join: naïve version
 - Problem?

\[R \bowtie_{R.sid=E.sid} E \]

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>major</th>
<th>adm_year</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alice</td>
<td>alicer34</td>
<td>CS</td>
<td>2021</td>
</tr>
<tr>
<td>101</td>
<td>Bob</td>
<td>bob5</td>
<td>CE</td>
<td>2020</td>
</tr>
<tr>
<td>102</td>
<td>Charlie</td>
<td>charlie7</td>
<td>CS</td>
<td>2021</td>
</tr>
<tr>
<td>103</td>
<td>David</td>
<td>davel</td>
<td>CS</td>
<td>2020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>semester</th>
<th>cno</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>s22</td>
<td>562</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>f21</td>
<td>560</td>
<td>3.7</td>
</tr>
<tr>
<td>101</td>
<td>s21</td>
<td>560</td>
<td>3.3</td>
</tr>
<tr>
<td>101</td>
<td>f21</td>
<td>560</td>
<td>3.3</td>
</tr>
<tr>
<td>102</td>
<td>s22</td>
<td>562</td>
<td>2.3</td>
</tr>
<tr>
<td>102</td>
<td>f21</td>
<td>560</td>
<td>4.0</td>
</tr>
<tr>
<td>103</td>
<td>s22</td>
<td>460</td>
<td>2.7</td>
</tr>
<tr>
<td>103</td>
<td>f21</td>
<td>250</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Sort-merge join

- Sort-merge join: naïve version
 - Problem? each matched group is scanned for an additional pass

student R

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>major</th>
<th>adm_year</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alice</td>
<td>alicer34</td>
<td>CS</td>
<td>2021</td>
</tr>
<tr>
<td>101</td>
<td>Bob</td>
<td>bob5</td>
<td>CE</td>
<td>2020</td>
</tr>
<tr>
<td>102</td>
<td>Charlie</td>
<td>charlie7</td>
<td>CS</td>
<td>2021</td>
</tr>
<tr>
<td>103</td>
<td>David</td>
<td>davel</td>
<td>CS</td>
<td>2020</td>
</tr>
</tbody>
</table>

enrollment E

<table>
<thead>
<tr>
<th>sid</th>
<th>semester</th>
<th>cno</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>s22</td>
<td>562</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>f21</td>
<td>560</td>
<td>3.7</td>
</tr>
<tr>
<td>101</td>
<td>s21</td>
<td>560</td>
<td>3.3</td>
</tr>
<tr>
<td>101</td>
<td>f21</td>
<td>560</td>
<td>3.3</td>
</tr>
<tr>
<td>102</td>
<td>s22</td>
<td>562</td>
<td>2.3</td>
</tr>
<tr>
<td>102</td>
<td>f21</td>
<td>560</td>
<td>4.0</td>
</tr>
<tr>
<td>103</td>
<td>s22</td>
<td>460</td>
<td>2.7</td>
</tr>
<tr>
<td>103</td>
<td>f21</td>
<td>250</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Sort-merge join

- Idea: sort R on $R.sid$ and sort E on $E.sid$
 “merge” them and emit the pairs with matching values on the join columns

- Algorithm sketch:
 - How to ensure R is scanned once, each S group is scanned once per matching $r \in R$?

```c
pr = address of first tuple in R
pe = address of first tuple in E
done = false
while (not done && pe != end && pr != end) do
  if (*pe != *pr)
    if *pe < *pr then ++pe else ++pr
    continue
  key = pr->sid
  pe0 = pe
  while pr != end && pr->sid == key
    pe = pe0
    while pe != end && pe->sid == key
      emit *pr *pe; ++pe
      pe2 = pe; ++pr
    pe = pe2
```

A few caveats in actual implementation:
1. Need to restructure the algorithm to fit into volcano model (project 6)
2. Rewinding (setting to a previously saved pointer) on iterator may be expensive!
3. Handling NULLs (NULLs never compare equal)
Sort-merge join

• Cost analysis: sorting cost + merge cost, let $M = 110, B = 10, \frac{M}{B} = 11$

 • Sorting cost: $2t_T N_R \left(\left\lceil \log_{\frac{M}{B}} \left(\frac{N_R}{M} \right) \right\rceil + 1 \right) + 2t_S \left(\left\lceil \frac{N_R}{M} \right\rceil + \left\lfloor \frac{N_R}{B} \right\rfloor \left\lceil \log_{\frac{M}{B}} \left(\frac{N_R}{M} \right) \right\rceil \right) + 2t_T N_E \left(\left\lceil \log_{\frac{M}{B}} \left(\frac{N_E}{M} \right) \right\rceil + 1 \right) + 2t_S \left(\left\lceil \frac{N_E}{M} \right\rceil + \left\lfloor \frac{N_E}{B} \right\rfloor \left\lceil \log_{\frac{M}{B}} \left(\frac{N_E}{M} \right) \right\rceil \right)$

 • includes the cost of writing the sort results to two temporary files
 • running example: sorting cost = 0.64 + 1.28 s = 1.92 s

 • Merge cost: two scans over the temporary files
 • number of pages read: $N_R + N_E = 1500$ (assuming all 5 matching tuples of S are on the same page)
 • This could be up to $N_R + N_R N_E$ in extreme case (why?)
 • number of seeks? (depending on the block size)
 • If we fetch one page from R and E at a time, then $N_R + N_E = 1500$
 • If we fetch $b = \left\lceil \frac{M}{2} - 1 \right\rceil = 54$ pages at a time for both, then $\left\lceil \frac{N_R}{b} \right\rceil + \left\lceil \frac{N_E}{b} \right\rceil = 10 + 19 = 29$
 • running example: cost = 6 s (one page at a time) or 0.112 s (54 pages at a time)
 • Total cost: ≈ 7.92 s (one page at a time) or 2.03 s (54 pages at a time)
Sort-merge join

• In practice, the cost of sort-merge join for an equi-join is usually linear to the relation sizes
 • assuming we have a large enough buffer for sorting everything in two passes
 • can even combine the merge phase of external sorting with the merge phase in sort-merge join (i.e., pipelining)

• Question: how large the tables can be in order to complete the sort-merge join in two passes? (minimal needed for sort-merge joins)
 • For simplicity, let \(B = 1 \)
 • Let \(N = \max(N_R, N_E) \), we need \(\log_{M-1} \left\lceil \frac{N}{M} \right\rceil \leq 1 \) => roughly \(N \leq M^2 - M \)
 • In other words, to perform a sort-merge join in two passes
 • the buffer size \(M \geq 0.5 + \sqrt{N} + 0.25 = O(\sqrt{N}) \)
 • good enough to use \(\sqrt{N} + c \) for some small constant \(c \) in practice

• Exercise: \(B > 1 \)?
Hash join

- Idea: build a hash table on outer relation R over its join attribute
 - Scan the outer relation and probe the hash table

 Build a hash table over R with hash function h_r
 foreach tuple e in E do
 probe the hash table for all the matching r in R
 and emit the join results

- However, the hash table might be too large to fit in memory.
- Extendible hashing/linear hashing have overhead for dynamic updates
 - not suitable for QP purpose

- Solution: partitioning using a hash function h_p
Hash join

- Two phases
 - Partitioning
 - Partitioning both outer R and inner E using the same hash function h_p
 - Rehashing and probing
 - load a partition for the outer R, rehash using a different hash function h_r and build a hash table
 - scan the partition of the outer E with the same hash value for h_p and probe the in-memory hash table
Hash join

• What if a partition won’t fit into memory in the rehashing phase?
 • *Recursive partitioning!*
 • In the rehash and probe phase, if both partitions with the same hash value are larger than \(M - 2 \)
 • recursively partition them as if they were the original relations to be joined
 • use a different partitioning hash function \(h'_p \)

• Assuming there’s no recursive partitioning
 • Cost of partitioning on \(R \) and \(E \):
 \[
 2t_TN_R + 2t_SN_R + 2t_TN_E + 2t_SN_E
 \]
 • can also use larger blocks \(B \) to reduce the number of seeks to \(\frac{2N_R}{B} + \frac{2N_E}{B} \)
 • Cost of rehashing and probing:
 \[
 t_TN_R + t_TN_E + 2t_S\left\lfloor \frac{M}{B} - 1 \right\rfloor \Rightarrow \text{linear to relation sizes}
 \]
 • total cost is roughly the cost of scanning both relations for three times
 • running example: \(M = 100, B = 10 \Rightarrow \text{cost} \approx 1.72 \text{s} \);
 • \(M = 1000, B = 10 \Rightarrow \text{cost} \approx 13.2 \text{s} \) (!)

• How big the outer table can be such that we can finish join in two passes (one partitioning pass)? assuming \(B = 1 \)
 • \(M - 1 \) partitions in Phase 1
 • Each should be no more than \(M-2 \) page large
 • Answer: \((M-2)(M-1)\) – assuming uniformity among the keys
 • i.e., we can do hash join in one pass in about \(O\left(\sqrt{N_R}\right) \) space
 • Much like sorting, but only dependent on the *outer relation size (usually the smaller one)*
 • Do need to use \(c\sqrt{N_R} \) in practice in case of key skews
 • Exercise: \(B > 1 \)?
Hybrid Hashing

- Can we do it better when both relations fit in memory?
 - In-memory hash join can finish in 1 scan instead of 3!
- Hybrid hashing
 - Idea: keep a small 1st partition (of size k) in memory in the partitioning phase
 - directly scan and probe the keys in the 1st partition after partitioning of the inner relation finishes
Hybrid hashing

- Assume we have the hash-partition function \(h_p : X \rightarrow [M - k - 1] \) (\(X \) is the domain of the key, i.e., the join column)

- Define \(h_h \) as follows: (technically, it is determined by the sequence of the keys)
 - \(h_h(x) = 1 \) if in-memory hash table is not yet full
 - \(h_h(x) = 1 \) if \(x \) is already in the hash table
 - \(h_h(x) = h_p(x) + 1 \) otherwise

- This ensures that:
 - Bucket 1 fits in \(k \) pages of memory
 - If the entire set of distinct hash table entries is smaller than \(k \), there is not spilling!

- During partitioning of the outer \(R \)
 - If \(h_h(r.\text{sid}) = 1 \)
 - insert \(r \) into in-mem hash table
 - Otherwise,
 - write \(r \) to its partition

- During partitioning of inner \(E \)
 - If \(h_h(e.\text{sid}) = 1 \)
 - probe in-mem hash table
 - Otherwise,
 - write \(e \) to its partition

- Only enter the rehashing and probing phase if there is any spill
Hybrid hashing

• Assume we have the hash-partition function $h_p: X \rightarrow [M - k - 1]$ (X is the domain of the key, i.e., the join column)

• Define h_h as follows: (technically, it is determined by the sequence of the keys)
 • $h_h(x) = 1$ if in-memory hash table is not yet full
 • $h_h(x) = 1$ if x is already in the hash table
 • $h_h(x) = h_p(x) + 1$ otherwise

• This ensures that:
 • Bucket 1 fits in k pages of memory
 • If the entire set of distinct hash table entries is smaller than k, there is not spilling!

• Running example
 • $M = 1000, k = 900$
 • Cost = $2t_S + t_T(N_R + N_E) \approx 0.15s$
Hashing for single-table ops

- Recursive hashing and hybrid hashing can also be applied to aggregation and deduplication operators
 - Instead of rehashing and probing
 - We only rehash each partition and maintain aggregates/distinct values
 - Cost analysis is similar to hash joins
Summary

• This lecture
 • Join algorithms
 • Nested loop (simple/block/index)
 • Sort-merge join
 • Hash join

• Next lecture
 • Query optimization

• Reminder: Project 6 is released on Apr 18
 • Write-up is due on May 14, 2023, 1:00 AM EDT