CSE462/562: Database Systems (Spring 23)
Lecture 18: Query Optimization Overview
4/20/2023
Query processing overview

ODBC/JDBC/ command line frontend

SQL Query
```
SELECT S.name, E.grade
FROM student S, enrollment E
WHERE S.sid = E.sid
    AND S.adm_year = 2021
    AND E.cno = 562;
```

SQL Parser

(Extended) Relational Algebra
```
\pi_{S.name,E.grade} \sigma_{S.adm\_year=2021 \land E.cno=562} S \bowtie_{S.sid=E.sid} E
```

Query Optimizer

Physical plan
```
\pi_{S.name,E.grade}
\sigma_{S.adm\_year=2021 \land E.cno=562}
S \bowtie_{S.sid=E.sid}

\pi_{S.name,S.sid}
\pi_{S.name,E.grade}
Index Scan
student S
Index Scan
enrollment E
Index Nested Loop Join
```

Logical plan
```
\pi_{S.name,E.grade}
\sigma_{S.adm\_year=2021 \land E.cno=562}
S \bowtie_{S.sid=E.sid}
Scan
student S
Scan
enrollment E
```

Query result
```
S.name | E.grade
Alice  | 4.0
Charlie| 2.3
```

2 rows
Query optimization overview

- Query can be converted to relational algebra
- Relational Algebra converted to tree, joins as branches
- Each operator has implementation choices
- Operators can also be applied in different order!

```sql
SELECT R.name
FROM Enroll E, Students R
WHERE E.sid = R.sid AND E.cno >= 500 AND R.adm_year = 2020
```
Query optimization overview

- **Plan**: Tree of R.A. ops (and some others) with choice of algorithm for each op.
 - Each operator typically implemented using a `pull’ interface: when an operator is `pulled’ for the next output tuples, it `pulls’ on its inputs and computes them.

- Two main issues:
 - For a given query, what plans are considered?
 - Algorithm to search plan space for cheapest (estimated) plan.
 - How is the cost of a plan estimated?

- Ideally: Want to find best plan.
- Reality: Avoid worst plans!

Relational operators have a uniform *iterator* interface:

```
open( ), get_next( ), close( )
```
Cost-based query optimizer

Usually there is a heuristics-based rewriting step before the cost-based steps.

```
Select *
From Blah B
Where B.blah = blah
```
Running example

• Notations: for relation R

 • T_R: number of records, N_R: number of pages in its heap file, B_R: (average) number of tuples per page

 • h_I: height of a B-tree index I over the file

 • M: private workspace size in pages

• Running example

 • Student: $R(sid: \text{int}, \text{name: varchar(19), login: varchar(19), major: char(2), adm_year: int})$

 • 50 bytes/tuple, $B_R = 80$, $T_R = 40,000$, $N_R = 500$

 • Assume the student records in the table span 10 years (between 2012 and 2022)

 • Enrollment: $E(sid: \text{int}, \text{semester: char(4), cno: int, grade: double})$

 • 20 bytes/tuple, $B_E = 200$, $T_E = 200,000$, $N_E = 1000$

 • Assume 50% of the enrollment records belong to the graduate level (≥ 500) courses

• Consider a simplified cost model: $cost = \#\text{page}_\text{transfers}$ (i.e., ignoring the random seeks)

 • Often good enough for approximating the trend of the cost relative to data size

 • Correct size estimation is key to a correct comparison of costs

• Assume we have 5 pages in the buffer
Motivating example

```
SELECT R.name
FROM Enroll E, Students R
WHERE E.sid=R.sid AND
  E.cno=562 AND R.adm_year = 2020
```

- By no means the worst plan!
- Misses several opportunities: selections could have been `pushed' earlier, no use is made of any available indexes, etc.
- **Goal of optimization**: To find more efficient plans that compute the same answer.

Cost = 1000 + 1000 * 500 = 501,000 I/Os
Relational algebra equivalence

- Rules that allow the optimizer to transform a logical plan into an equivalent plan with the *same* output over any database instance

Selections:
- Cascade: $\sigma_{\theta_1 \land \theta_2} E \equiv \sigma_{\theta_1} \sigma_{\theta_2} E$
- Commutative: $\sigma_{\theta_1} \sigma_{\theta_2} E \equiv \sigma_{\theta_2} \sigma_{\theta_1} E$

Projections:
- Cascade: $\pi_{A_1} \pi_{A_2} \ldots \pi_{A_n} E \equiv \pi_{A_1}(E)$ where $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n$
 - Only need to perform the final projection in a sequence of projections

(Inner) Joins or Cartesian product:
- Commutative: $E_1 \bowtie_\theta E_2 \equiv E_2 \bowtie_\theta E_1$ (allows switching the inner and outer)
- Associative
 - Special case natural join: $(E_1 \bowtie E_2) \bowtie E_3 \equiv E_1 \bowtie (E_2 \bowtie E_3)$
 - General theta join: $(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \land \theta_3} E_3 \equiv E_1 \bowtie_{\theta_1 \land \theta_3} (E_2 \bowtie_{\theta_2} E_3)$
- Implication: inner joins can be done in any order!
 - **Join reordering**: an important optimization step in DBMS

Assuming θ_2 only involves fields in E_2 and E_3
Relational algebra equivalence

• Rules for more than one operator

 • *Selection can be combined with inner join/cartesian product*
 \[
 \sigma_{\theta_1} (E_1 \bowtie_{\theta_2} E_2) \equiv E_1 \bowtie_{\theta_1 \wedge \theta_2} E_2
 \]

 • **Projection push-down:** select/join and projection commutes (provided that the predicate only involves the projected fields)
 \[
 \pi_A \sigma_{\theta} E \equiv \sigma_{\theta} \pi_A E \quad \text{when } \text{Var}(\theta) \subseteq A
 \]
 \[
 \pi_{A_1 \cup A_2} (E_1 \bowtie_{\theta} E_2) \equiv \pi_{A_1} E_1 \bowtie_{\theta} \pi_{A_2} E_2 \quad \text{when } \text{Var}(\theta) \subseteq A_1 \cup A_2 \text{ and } A_1, A_2 \text{ only involve fields from } E_1, E_2, \text{ resp.}
 \]

 • **Selection push-down:** join and select commutes (provided that the selection predicate only involves attributes from one side)
 \[
 \sigma_{\theta_1} (E_1 \bowtie_{\theta} E_2) \equiv (\sigma_{\theta_1} E_1) \bowtie_{\theta} E_2 \quad \text{when } \text{Var}(\theta_1) \subseteq A(E_1) \text{ (set of fields in } E_1)\]

• More rules about other operators, e.g., aggregation, set operations, sort, ...

• Note: rules involving outer joins may be different

 • Exercise: Can we always push selection through outer joins? What about projections?
Selection push-down (no index)

- Heuristics 1: perform selections as early as possible
 - Selection is often very cheap or “free” (in I/O only cost model)
 - reduces intermediate size

Cost = \(501,000 \) I/Os

Collect one page from the outer plan, rather than the underlying scan.

Cost = \(1000 + [1000 \times 0.5] \times 500 = 251,000 \) I/Os
Selection push-down (no index)

- Can also push-down on the other side

\[\pi_{R.name} \]

\(\sigma_{R.adm_year=2020} \) (On-the-fly)

\(\sigma_{E.cno\geq 500} \) (On-the-fly)

\(\bowtie_{E.sid=R.sid} \) (Block nested loop)

Students R

Enroll E

Cost = 251,000 I/Os

\(\sigma_{R.adm_year=2020} \) (On-the-fly)

\(\sigma_{E.cno\geq 500} \) (On-the-fly)

\(\bowtie_{E.sid=R.sid} \) (Block nested loop)

Students R

Enroll E

Cost = 251,000 I/Os

No impact on I/O because BNL scans the inner plan once for every outer block.
Join reordering

- Different join ordering may result in different cost
 - even if we use the same join algorithm
 - Generally, the outer plan should have a smaller output in BNL
 - what about hash join/sort merge join?

\[
\begin{align*}
\text{Enroll } E & \quad \bowtie_{E.sid=R.sid}^{\pi_{R.name}} (\text{Block nested loop}) \quad \sigma_{E.cno\geq500}^{(\text{On-the-fly})} \\
\text{Students } R & \quad \sigma_{R.adm_year=2020}^{(\text{On-the-fly})} \\
\text{Cost} & = 251,000 \text{ I/Os}
\end{align*}
\]

\[
\begin{align*}
\text{Students } R & \quad \sigma_{R.adm_year=2020}^{(\text{On-the-fly})} \\
\text{Enroll } E & \quad \bowtie_{E.sid=R.sid}^{\pi_{R.name}} (\text{Block nested loop}) \quad \sigma_{E.cno\geq500}^{(\text{On-the-fly})} \\
\text{Cost} & = 500 + [500 \times 0.1] \times 1000 = 50,500 \text{ I/Os}
\end{align*}
\]
Materialization of inner plan

• We can also choose to materialize the inner plan for BNL to save repeated scan on the original relation.
Materialization of inner plan

• Sometimes with materialization, it might be cheaper to use the larger plan as the outer

\[
\begin{align*}
\sigma_{R.adm_year=2020} & \quad (\text{On-the-fly}) \\
\pi_{R.name} & \quad (\text{On-the-fly}) \\
\sigma_{E.cno \geq 500} & \quad (\text{materialize in temporary file}) \\
\bowtie_{E.sid=R.sid} & \quad (\text{Block nested loop}) \\
\end{align*}
\]

Students R

\[
\begin{align*}
\text{Enroll E} & \quad (\text{On-the-fly}) \\
\end{align*}
\]

\[
\begin{align*}
\text{Cost} &= 1000 + [1000 \times 0.5] + 500 + [500 \times 0.1] \times [1000 \times 0.5] \\
&= 27,000 \text{ I/Os}
\end{align*}
\]

\[
\begin{align*}
\sigma_{R.adm_year=2020} & \quad (\text{On-the-fly}) \\
\pi_{R.name} & \quad (\text{On-the-fly}) \\
\sigma_{E.cno \geq 500} & \quad (\text{materialize in temporary file}) \\
\bowtie_{E.sid=R.sid} & \quad (\text{Block nested loop}) \\
\end{align*}
\]

Students R

\[
\begin{align*}
\text{Enroll E} & \quad (\text{On-the-fly}) \\
\end{align*}
\]

\[
\begin{align*}
\text{Cost} &= 500 + [500 \times 0.1] + 1000 + [1000 \times 0.5] \times [500 \times 0.1] \\
&= 26,550 \text{ I/Os}
\end{align*}
\]
Projection push-down

- Heuristics 2: apply projection as early as possible
 - helps if materializing plan output

Enrollment: $E(\text{sid: int, semester: char(3), cno: int, grade: double})$

$20 \text{ bytes/tuple} \Rightarrow \pi_{E.\text{sid}} : \frac{4}{20} = 20\% \text{ in size after projection}$

\[
\begin{align*}
\text{Cost} &= 1000 + [1000 \times 0.5] + 500 + [500 \times 0.1] \times [1000 \times 0.5] \\
&= 27,000 \text{ I/Os}
\end{align*}
\]
Projection push-down

• More projection push-down on the other side

\[R(\text{sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int}) \]

50 bytes/tuple => \[\pi_{R.name,R.sid} : \frac{4+19+1}{50} = 48\% \text{ -- assuming VARCHAR uses ‘\0’ at the end} \]

\[\sigma_{R.adm_year=2020} \]

\[\pi_{E.sid} \]

\(\bowtie_{E.sid=R.sid} \)

(On-the-fly)

(On-the-fly)

(Block nested loop)

(Block nested loop)

Students R

(On-the-fly)

(On-the-fly)

Enroll E

Cost = 1000 + [1000 * 0.5 * 0.2]
+ 500 + [500 * 0.1] * [1000 * 0.5 * 0.2]
= 6,600 I/Os

Cost = 1000 + [1000 * 0.5 * 0.2]
+ 500 + [500 * 0.1 * 0.48] * [1000 * 0.5 * 0.2]
= 4,000 I/Os

50 bytes/tuple => \[\pi_{R.name,R.sid} : \frac{4+19+1}{50} = 48\% \text{ -- assuming VARCHAR uses ‘\0’ at the end} \]
Choice of join algorithms

- If we switch to sort-merge join with 5 buffers

\[
\begin{align*}
\text{Students } R & \quad \text{Enroll } E \\
\pi_{R.\text{name}} & \quad \text{(On-the-fly)} \\
\bowtie_{E.\text{sid}=R.\text{sid}} & \quad \text{(Block nested loop)} \\
\pi_{E.\text{sid}} & \quad \text{(materialize in temporary file)} \\
\sigma_{R.\text{adm_year}=2020} & \quad \text{(On-the-fly)} \\
\sigma_{E.\text{cno} \geq 500} & \quad \text{(On-the-fly)} \\
\pi_{R.\text{name},R.\text{sid}} & \quad \text{(Materialization)} \\
\text{Students } R & \quad \text{Enroll } E \\
\pi_{E.\text{sid}} & \quad \text{(On-the-fly)} \\
\sigma_{R.\text{adm_year}=2020} & \quad \text{(On-the-fly)} \\
\sigma_{E.\text{cno} \geq 500} & \quad \text{(On-the-fly)} \\
\pi_{R.\text{name},R.\text{sid}} & \quad \text{(Materialization)} \\
\text{Students } R & \quad \text{Enroll } E \\
\end{align*}
\]

Cost = \(1000 + [1000 \times 0.5 \times 0.2] + 500 + [500 \times 0.1 \times 0.48] \times [1000 \times 0.5 \times 0.2] \)

\[= 4,000 \text{ I/Os} \]

Cost = ?
Choice of join algorithms

- Sort outer:
 - Size after pass 0: \([500 \times 0.1 \times 0.48] = 24\)
 - 4 pages/run, 6 runs
 (need one input buffer for table scan)
 - # merge passes = \([\log_4 6]\) = 2
 - Total I/O: \(500 + 24 + 2 \times 2 \times 24 = 620\)

- Sort inner: # I/O = 1700

- Merge
 - assuming \(d = 5\) and always fit in one page
 - \(24 + 100 = 124\)

- Total cost = \(620 + 1700 + 124 = 2,444\) I/Os
 - vs BNL: 4,000 I/Os

Cost = ?
Using indexes

- If we have a clustered B-Tree index over \(R(adm_year) \), \(h = 3 \)

\[
\begin{align*}
\text{Cost} &= 1000 + [1000 \times 0.5 \times 0.2] \\
&+3 + [500 \times 0.1 \times 0.48] \\
&+[500 \times 0.1 \times 0.48] \times [1000 \times 0.5 \times 0.2] \\
&= 3,527 \text{ I/Os}
\end{align*}
\]
Using indexes

- If we have an unclustered B-Tree index over \(E(sid) \), \(h = 3 \)
 - Generally, index nested loop is a bad choice unless both of the following is true
 - outer plan output size is small
 - join is very selective

\[
\begin{align*}
\text{Cost} &= 3 + [500 \times 0.1 \times 0.48] + [40000 \times 0.1] \times (3 + 5) \\
&= 32,027 \text{ I/Os} \quad \text{(vs 3,527 I/Os with BNL!)}
\end{align*}
\]

Assuming each student has 5 enrollment records on average.
What’s needed for query optimization?

• A closed set of operators
 • Relational ops (table in, table out)
 • Encapsulation based on iterators

• Plan space, based on
 • Based on relational equivalences

• Cost Estimation, based on
 • Cost formulas
 • Size estimation, based on
 • Catalog information on base tables
 • Selectivity (Reduction Factor) estimation

• A search algorithm
 • To sift through the plan space based on cost!
Summary

• Today’s lecture
 • Query optimization overview
 • Relational algebra equivalence
 • Query optimization is needed to ensure not-too-bad performance if not the best
 • Need to understand the impact of cost model/physical data layout/indexing for a given query

• Next lecture(s)
 • Plan size and cost estimation
 • How to search in the optimization space
 • System R style query optimizer