
CSE462/562: Database Systems (Spring 24)
Lecture 1: Introduction & Course Logistics;

Physical Storage

1/29/2024

Find more on course website & Piazza:
https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring24/
https://piazza.com/buffalo/spring2024/cse462562

Knox 109, M 4:00 pm – 6:40 pm. In-person attendance required.

https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring24/
https://piazza.com/buffalo/spring2024/cse462562


Today’s agenda
• Introduction

• What is a Database?

• What is a Database Management System?

• What is this course about and why should I care?

• Logistics

• Physical Storage

CSE462/562 (Spring 2024): Lecture 1 2



What is a Database?
• Database is

• a collection of interrelated data

• often organized in a certain structure for convenient and efficient access

• Databases are found almost everywhere, sometimes unnoticed
• Business: sales, accounting, human resource, IT support, …

• Financial industry: banking, credit card, investment platform

• University: student records, course registration, LMS (e.g., UB Learns), ...

• Some less obvious examples of databases

• Software package and configuration DB (e.g., windows registry)

• Your photo library (e.g., Google Photos)

• Your personal finance records

• …
CSE462/562 (Spring 2024): Lecture 1 3



What’s a DataBase Management System?
• DataBase Management System (DBMS) is a software system for

convenient and efficient data access over databases.

CSE462/562 (Spring 2024): Lecture 1

Application Interface

SQL Interpreter

Query Evaluator

Plan 

Generator

Plan 

Executor

Plan 

Optimizer

Data Access

Transaction

Manager

Buffer

Manager

Security

Manager

File & Index

Manager

Database

Data 

Files

Index

Files

System & Metadata

Files

Crash 

Recovery

Concurrency 

Control

4



Why using a DataBase Management System? 
• Let’s review an example of how to manage a database.

CSE462/562 (Spring 2024): Lecture 1 5



How to manage a database?
• Suppose I’d like to track my daily spending

• What I can do:
• Step 1: collect all the receipts

• Step 2: do some analysis

• How much did my spend on grocery and fast food in Feburary?

• How much could I have saved if I cook by myself in Feburary?

• What about January/last quarter/last year/past five years?

CSE462/562 (Spring 2024): Lecture 1 6



How to manage a database?
• Suppose I’d like to track my daily spending

• What I can do:
• Step 1: collect all the receipts

• Step 2: write them down on a notebook

• Step 3: do some analysis

• How much did my spend on grocery and fast food in Feburary?

• How much could I have saved if I cook by myself in Feburary?

• What about January/last quarter/last year/past five years?

Date  Amount  Description

2/1   $20.21   Grocery

2/2   $10.54   Fast food

2/3   $39.22   Cell phone bill

…

2/27  $33.00   Clothes  

CSE462/562 (Spring 2024): Lecture 1 7



How to manage a database?
• Suppose I’d like to track my daily spending

• What I can do:
• Step 1: collect all the receipts

• Step 2: write them down on a notebook
store them in a text file

• Step 3: do some analysis

• How much did my spend on grocery and fast food in February?

• How much could I have saved if I cook by myself in February?

• What about January/last quarter/last year/past five years?

Date  Amount  Description

2/1   $20.21   Grocery

2/2   $10.54   Fast food

2/3   $39.22   Cell phone bill

…

2/27  $33.00   Clothes  

f = open(‘myspend_feb_22.txt’, ‘r’)

grocery = 0

fast_food = 0

for line in f:

 date, amount, desc = line.split(‘ ‘)

 if desc == ‘Fast food’:

  fast_food += eval(amount)

 elif desc == ‘Grocery’:

  grocery += eval(amount)

……

CSE462/562 (Spring 2024): Lecture 1 8



How to manage a database?
• Suppose I’d like to track my daily spending

• What I can do:
• Step 1: collect all the receipts

• Step 2: write them down on a notebook
store them in a text file
use a spreadsheet

• Step 3: do some analysis

• How much did my spend on grocery and fast food in Feburary?

• How much could I have saved if I cook by myself in Feburary?

• What about January/last quarter/last year/past five years?

Date  Amount  Description

2/1   $20.21   Grocery

2/2   $10.54   Fast food

2/3   $39.22   Cell phone bill

…

2/27  $33.00   Clothes  

CSE462/562 (Spring 2024): Lecture 1 9



How to manage a database?
• Suppose I’d like to track my daily spending

• What I can do:
• Step 1: collect all the receipts

• Step 2: write them down on a notebook
store them in a text file
use a spreadsheet
use/build a personal finance app

• Step 3: do some analysis

• How much did my spend on grocery and fast food in Feburary?

• How much could I have saved if I cook by myself in Feburary?

• What about January/last quarter/last year/past five years?

Date  Amount  Description

2/1   $20.21   Grocery

2/2   $10.54   Fast food

2/3   $39.22   Cell phone bill

…

2/27  $33.00   Clothes  

SELECT category, SUM(amount)

FROM spend

WHERE userid = 123456

GROUP BY category;

Backend 
Server

Some App My spend? SQL Database 
Server

CSE462/562 (Spring 2024): Lecture 1 10



Why using a DataBase Management System?
• DataBase Management System (DBMS) is a software system for

convenient and efficient data access over databases,

which provides:
• Data abstraction

• Flexible data manipulation and query interfaces
• Scalable data storage
• Efficient query and transaction processing

• Integrity checks
• Concurrency control and atomicity
• Fault tolerance
• Security and privacy
• …

CSE462/562 (Spring 2024): Lecture 1 11



What dose this course cover?
• The design and implementation of DataBase Management System (DBMS)

• Relational DBMS (RDBMS) as a case study

• Stores tables that consist of rows and columns

• Declarative query language (SQL) in the simple yet powerful relational model

• Focus on principles and techniques generally applicable in Data Management

• Note, this course is not about
(but we assume you have learned these somewhere else):

• Database design

• The relational model and the SQL language (we’ll briefly review them)

• Programming/data structure/algorithm analysis/math…

CSE462/562 (Spring 2024): Lecture 1 12



Why should I care about DBMS internals?
• > 90 billion dollar worth industry

• Many more are directly or indirectly using DBMS products

• Many vendors and products:
• Relational: MySQL, Oracle DB, Microsoft SQL Server, IBM Db2, PostgreSQL, SQLite…

• Graph DB and Graph data processing: Neo4j, Virtuoso, GraphLab, Spark GraphX, …

• Stream Processing: Apache Flink, Spark Streaming, Apache Storm, …

• Semi-structured DB: MongoDB, CouchBase, DocumentDB, …

• Distributed database: Google Spanner, Microsoft CosmosDB, …

• …

• Used by many other research and application areas:
• Artificial Intelligence/data mining/search engine/social media/fintech/…

CSE462/562 (Spring 2024): Lecture 1 13



Why should I care about DBMS internals?
• Huge demand in industry for those who can

• query/manipulate data in database efficiently

• fine-tune the imperfect DBMS/big data processing systems

• work seamlessly with the data infrastructure team

• An actively researched area that
• has strong real-life impacts and connection to the industry

• has many related open engineering and research positions

• The goal of this course:
• understanding the common problems and solutions in data management

• gaining hands-on experience with building a complex software system

• to be helpful in your future industrial/academic career
CSE462/562 (Spring 2024): Lecture 1 14



Logistics
• Knox 109, M 4:00 pm – 6:40 pm.

• In-person attendance required.

• Bring some snacks and water if needed ☺

• Instructor: Zhuoyue Zhao
• Office hours: TBD

• TA/Grader:
• TBD

• No office hour in week 1
• Please post on Piazza for help if there’s any issue with project 1

• Find more on course website: 
https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring24/

CSE462/562 (Spring 2024): Lecture 1 15

https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring24/


Logistics
• We mainly use Piazza for communication:

• https://piazza.com/buffalo/spring2024/cse462562

• Please post any request/question on Piazza instead of sending emails

• Piazza reminds me of all unresolved questions but outlook doesn’t!

• When you have any private question/request for the instructor or TA:
• please select “Instructors” in Post To

CSE462/562 (Spring 2024): Lecture 1 16

https://piazza.com/buffalo/spring2024/cse462562


Logistics
• Important Dates:

• Mid-term exam: 3/27/2024, Knox 104, 7:05 pm – 8:25 pm (80 minutes)

• Final exam: 5/15/2024, Knox 109, 3:40 pm – 5:20 pm (100 minutes)

• Exam conflict policy:
• If you have final exam conflicts as defined by the Office of the Registrar

• please notify the instructor on Piazza by 2/13/2023

• (we might not have enough seats if you do not notify us by that date)

• you may still opt for the original final exam at any time with one-week prior notice

CSE462/562 (Spring 2024): Lecture 1 17

https://registrar.buffalo.edu/schedules/finalexams.php


Grading
• Grading

• Mid-term exam: 20%

• Final exam: 20%

• Homework Assignments (20%)

• Projects: 40% + 10% in bonus

• Grading policy:
• No curving.

CSE462/562 (Spring 2024): Lecture 1 18

[0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, +∞)

F D C- C C+ B- B B+ A- A



Exams and Assignments
• 6 written assignments

• 5% each, lowest 2 are excluded from your final grade

• Similar problems that will appear in exams

• Must be written electronically in LaTeX (encouraged) or word

• Do not submit scans of handwriting

• Exams
• Open-book exams

• Only paper-copy of the course slides, the written assignments and solutions, the 
optional textbook, and your lecture notes are allowed

• No electronic devices except a calculator

CSE462/562 (Spring 2024): Lecture 1 19



Course project
• Build a mini RDBMS through 5 projects (C++ 17)

• Teams allowed with up to 2 students
• teamwork allowed only within teams

• see academic integrity policy for details

• Using generative AI is disallowed

• Code must be kept in private Github repository, even after this semester

CSE462/562 (Spring 2024): Lecture 1 20



Course project
• Instructions for projects:

• Project pages contain very detailed instructions.

• If something requires clarification, it’s most likely covered there.

• Still have questions on project or found bugs?

• Feel free to post it on Piazza (though we may point you back to the instructions).

• Your team will get 1 extra credit towards your final grade for every validated bug or 
question that cannot be answered by the project instruction.

• Where to find project pages:
https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring24/

CSE462/562 (Spring 2024): Lecture 1 21

https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring24/


Project 1
• Project 1 is designed as a warm-up project

• Two labs with two separate submissions required

• Lab 0: project sign-up
• Please find a teammate, and follow the repository and sign-up instructions
• Due 2/1, 11:59 PM EST, no late submissions allowed

• Lab 1: build a simple C++ class that encapsulates POSIX I/O interfaces
• Goal: get familiar with reading documentations
• Use `man <function_name>` command to find syscall docs
• Find code docs of Taco-DB from the Project drop-down menu
• Due 2/4, 11:59 PM EST, see late policy

• Submission will be open no later than 2/2.

CSE462/562 (Spring 2024): Lecture 1 22



Project/assignment submission & late policy
• All submission are done through Autolab

• https://autolab.cse.buffalo.edu/courses/cse462-s24
• If you don’t see the course in your Autolab landing page, message us on Piazza

• Late policy:
• For each submission, 10-minute grace period is allowed.
• Each student will have 3 grace days throughout the semester.

• For each project/assignment, you may use up to 1 grace day with no penalty to your grade
• Examples:

• You submit project 1 - 3 within a day after the posted deadlines
• No penalty to the grades.

• You submit project 1, HW1, project 2, project 3 within a day after the posted deadlines
• No penalty to the grades of project 1, HW1, project 2.
• No points will be received for project 3.

• You submit HW1 after one day after the posted deadline
• No points will be received for HW1 (but it will be graded to provide you feedbacks)

CSE462/562 (Spring 2024): Lecture 1 23

https://autolab.cse.buffalo.edu/courses/cse462-s24


Academic Integrity Policy
• Academic integrity is critical to the learning process. It is your responsibility to 

understand and follow all the departmental and university academic integrity 
policies.

• Zero tolerance towards academic integrity violations, which includes but are not 
limited to
• Sharing/copying code in projects or
• Plagiarizing write-ups
• Cheating in exam
• Making project code publicly available or available to any current or future students
• Submitting code repository that does not belong to you
• (New) Use of generative AI in this class for any coursework

• Any AI violation will result in an F grade and will be reported to the Office of 
Academic Integrity
• unless it’s an honest mistake that does not give anyone any undue advantage

• (e.g., you accidentally set your Github repo to public but changed it back before anyone 
accesses it)

CSE462/562 (Spring 2024): Lecture 1 24



More on Academic Integrity Policy
• Think of the course projects as take-home exams:

• you must complete them by yourself (or with your teammate for coding only)
• please do not discuss any project specifics outside your team

• Examples of AI violation related to course project:
• Discussion of code with any student who is not your teammate
• Viewing/committing/submitting code written by anyone who is not your teammate

• verbatim or with modification
• including those generated or adapted from outputs from generative AI software (e.g., ChatGPT)

• Discussion of project write-ups with any student (including your teammate)
• Viewing/copying/rephrasing answers found online or from a past or current student

• What is allowed and encouraged (on Piazza/in lecture/offline, publicly or privately)
• Ask questions about lectures
• Preparation for mid-term and final exams
• Seek clarification about projects/homework assignments
• If you’re unsure, please do ask.

CSE462/562 (Spring 2024): Lecture 1 25



Short break
• Upcoming: physical storage

CSE462/562 (Spring 2024): Lecture 1 26



Big Picture

CSE462/562 (Spring 2024): Lecture 1 27

Operating System

CPU Memory
Secondary 
Storages

Hardware devices

DBMS

User applications

Buffer Management

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API



Typical (& oversimplified) computer architecture

• A simplistic view of a computer

CSE462/562 (Spring 2024): Lecture 1 28

CPU

Cache Main Memory

SSD

HDD

Typical
Computer

Secondary
Storage

…



Storage Hierarchy

CSE462/562 (Spring 2024): Lecture 1 29

L1 Cache

Registers

L2 Cache

L3 Cache

Main memory

Flash Memory

Magnetic disk

Lower price per bit Higher speed

Volatile

Non-volatile

~4 cycles

~10 cycles

~60 cycles

~60 ns

~100𝑠 𝜇𝑠

~10𝑠 𝑚𝑠

1 cycle

Tape

Primary storage

Secondary storage

Tertiary storage



Tape

Data Transfers

CSE462/562 (Spring 2024): Lecture 1

L1 Cache

Registers

L2 Cache

L3 Cache

Main memory

Flash Memory

Magnetic disk

Volatile

Non-volatile

Between cache and main memory:
hardware/OS controlled
usually in small units of cache lines

Between main memory and secondary storage:
DBMS controlled (read/write)
usually with large block I/O

CPU operates on main memory (byte addressable)

30



Volatile storage
• Register

• Very fast but very limited amount

• CPU directly operates on registers

• Cache
• Faster than main memory but takes multiple cycles to access

• Stores cache lines that are likely to be read/write again

• Usually managed by CPU

• Main memory
• Still quite fast albeit it takes hundreds of cycles

• CPU instructions can read/write byte addressable data into/from registers

CSE462/562 (Spring 2024): Lecture 1 31



Why not store everything in memory?
• Too expensive

• Data growth is much faster than what you can afford

• Volatile
• Power loss -> data loss

• Typical storage hierarchy in (traditional) DBMS
• Main memory as buffer/working space

• Disk as the main database storage

• Tape for archiving old data

• Main memory DB actually uses memory for main database storage

• Persistency of data? Logging & checkpointing (later lectures)

CSE462/562 (Spring 2024): Lecture 1 32



Non-volatile storage
• Common non-volatile (secondary) storage

• Flash memory (e.g., SSD)
• Magnetic disk

• Advantages
• Cheaper -- can store much more data than memory with the same cost
• Non-volatile – data are saved in server shutdown/power failure

• Disadvantages
• Block device: read/write in the units of sectors (usually 512B/4096B)
• Higher latency: usually >= 1 – 2 orders of magnitude slower than main memory

• Tertiary storage: tape (sequential I/O only)
• Very slow but inexpensive; good for archiving data

CSE462/562 (Spring 2024): Lecture 1 33



Closer look at non-volatile storage
• We need to know the performance characteristics of non-volatile storage

• to optimize database storage design

CSE462/562 (Spring 2024): Lecture 1 34

Magnetic disk (HDD) Solid State Drive (SSD)

This Photo by Unknown Author is licensed under CC BY

http://flickr.com/photos/intelfreepress/6345916908
https://creativecommons.org/licenses/by/3.0/


Magnetic disk organization
• Multiple platters

• Each platter has two surfaces for data storage
• Platters spin at the same rate (e.g., 7200 rpm)

• A ring on a surface is called a track

• A track is divided into many sectors of fixed size (512 B)
• A sector is the smallest unit of I/O

• A single arm assembly with multiple disk heads
• Can only move inward/outward together

• The vertical stack of tracks is called a cylinder

• Disk heads can be over the tracks of the same cylinder at the 
same time

• Usually one read/writes at the same time

• Address of a sector: cylinder - head - sector
• (0, 0, 0) : first sector; (0, 0, 1): second sector, …

(0, 1, 0) : the 𝑆𝑡ℎ sector, (1, 0, 0) the (𝑆𝐻)𝑡ℎ

where S is the max # of sectors/track and H is the # of heads
• Reality: today’s disks use logical block addressing (linear block #)

• Translated to the actual geometry by disk controller

• Nevertheless, this is still a good model for understanding      
HDD performance.

CSE462/562 (Spring 2024): Lecture 1 35



Magnetic disk I/O latency
• File systems perform I/O in units of 

multiple sector (page)
• 4KB~16KB are most common

• Break-down of I/O latency of a page
• Seek time:  moving arms to the cylinder

• 2 ~ 20 ms per seek
• 4  ~ 10 ms on average

• Rotation delay:
wait for the sector to be under a head

• Depending on rotation speed (5400 rpm - 15000 
rpm)

• E.g, 7200 rpm = 120 rotations/second
=> 1/120 = 8.33 ms / rotation
on average it needs a half rotation
=> 8.33 / 2 = 4.17 ms on average

• Transfer time: time for reading/writing data
• Data transfer rate: 50 - 200 MB/s
•  0.02 ~ 0.08 ms for 4KB pages

• Average access time
• 4KB page, 7200 rpm: roughly 8 ~ 15 ms

CSE462/562 (Spring 2024): Lecture 1 36



Impact of I/O pattern on magnetic disk
• I/O pattern has a huge impact on I/O performance

• E.g., 4KB page size

• Sequential read/write: usually 100 ~ 200+ MB/s

• Random read/write: 50 ~ 200 IOPS  200 KB ~ 800 KB /s

• > 2 orders of magnitude difference in terms of data transfer rate

• Rule of thumb:

• Random I/O: very slow; avoid reading a lot of data from random location

• Sequential I/O: better for accessing a lot of data

CSE462/562 (Spring 2024): Lecture 1 37



Flash memory / solid state drive
• NAND Flash is the most common storage media for solid state drives

• No mechanical parts (magnetic disk can have head crash => data 
corruption/loss)
• More reliable; less likely to fail due to physical shocks

• Faster than magnetic disk

CSE462/562 (Spring 2024): Lecture 1 38



Flash memory / solid state drive
• NAND SSD has asymmetric read/write performance

• 4KB page, typical SSD internal performance numbers
• Read latency: 20 to 100 𝜇𝑠 ; throughput: > 500 MB/s
• Write latency: 200 𝜇𝑠; throughput: > 500 MB/s
• Erase latency: ~2 ms

• Three ops: read/write/erase
• Read/write works on pages (usually 4KB)

• Write can only change some bits from 1 to 0 (not the other way around!)
• Muse erase before write a page.

• Erase works on blocks (e.g., 256 KB)
• Resets all bits in a block to 1
• Flash translation layer: indirection of page numbers to physical pages

• Solves two problems: slow erase and flash wear
• Actual performance also often bound by peripheral bus’s bandwidth and IOPS

CSE462/562 (Spring 2024): Lecture 1 39



Flash memory / solid state drive
• NAND SSD has asymmetric read/write performance

• The performance from DB stand of view?

• No single answer depending on how you use it

• I/O queue depth, I/O api, access pattern, page size, peripheral bus type and 
etc.

• In a typical case:

• Sequential I/O is still preferred, although random I/O isn’t as bad as in HDD

• SSDs have much better random I/O performance than magnetic disk

• 10k - 1M IOPS

• and higher bandwidth as well

• up to 7GB/s on PCIe 4.0, ~500MB/s on SATA

CSE462/562 (Spring 2024): Lecture 1 40



Big Picture

CSE462/562 (Spring 2024): Lecture 1 41

Operating System

CPU Memory
Secondary 
Storages

Hardware devices

DBMS

User applications

Buffer Management

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API



File System Interface
• POSIX I/O interface

• A standard synchronous I/O interface

• Agnostic to the underlying storage device/file system

CSE462/562 (Spring 2024): Lecture 1 42

open(2): open and possibly create a file -> file descriptor (int)

A file descriptor is a reference to an open file 
description, an entry in the system-wide 
table of open files that records file offsets 
and file status flags.

int fd = open(“/data/a.dat”, O_RDONLY | O_CREAT, 0644);

opens the file at path 
/data/a.dat

1. read-only access
2. create the file if it 

does not exist

The permission bits if the file is created.
0644 = rw allowed for user (file owner);
 read only for group & others.

Case 1: fd >= 0 on success.
Case 2: fd == -1 if an error occurred  -- check errno for reasons; also see strerror(3)



File System Interface
• POSIX I/O interface

• A standard synchronous I/O interface

• Agnostic to the underlying storage device/file system

CSE462/562 (Spring 2024): Lecture 1 43

open(2): open and possibly create a file -> file descriptor (int)

A file descriptor is a reference to an open file 
description, an entry in the system-wide 
table of open files that records file offsets 
and file status flags.

pread(2), pwrite(2): read from or write to a file descriptor at a given offset
 char buf[4096];

 ssize_t sz = pread(fd, buf, 4096, 1048576);

 if (sz == 4096) /* success */; else /* error */;

reading 4096 bytes at file offset 1048576 = 4096 * 256 (i.e., reading page 255 from a file assuming 4KB pages)

int fd = open(“/data/a.dat”, O_RDONLY | O_CREAT, 0644);



File System Interface
• POSIX I/O interface

• A standard synchronous I/O interface

• Agnostic to the underlying storage device/file system

CSE462/562 (Spring 2024): Lecture 1 44

open(2): open and possibly create a file -> file descriptor (int)

A file descriptor is a reference to an open file 
description, an entry in the system-wide 
table of open files that records file offsets 
and file status flags.

pread(2), pwrite(2): read from or write to a file descriptor at a given offset

posix_fallocate(3), fallocate(2)

fsync(2), fdatasync(2),

close(2)

int fd = open(“/data/a.dat”, O_RDONLY | O_CREAT, 0644);

Check man pages for more details.



Disk Space Management
• Lowest layer of DBMS software manages space on disk

• Disk space is usually organized in pages
• which may not necessarily directly be mapped to disk sectors/file system pages!
• common choices are 4KB, 8KB, 16KB, etc.

• Using the OS file system or not? Some do and some don’t!
• Even with file system

• How to organize pages (in one file/multiple files)?
• How to deal with concurrency/recovery?
• …

• Higher levels call upon this layer to:
• allocate/de-allocate a page
• read/write a page

• Best if a request for a sequence of pages is satisfied by pages stored sequentially on disk!
• Responsibility of disk space manager.
• Higher levels don’t know how this is done, or how free space is managed.
• Though they may assume sequential access for files!

• Hence, disk space manager should do a decent job.
CSE462/562 (Spring 2024): Lecture 1 45



Disk Space Management in course project Taco-DB
• A flat main data storage page from page 0 to page 232 − 1

• Stored as 64GB files on the local file system;
• One instance of FSFile manage a real file in the file system (e.g., allocate/read/write a page).

• This is your task in Project 1 – lab 1.
• FileManager manages many virtual files (more on this next week)

• Each is a double-linked list of pages, allocated in groups of 64 consecutive pages
• Each file maintains its own free list

CSE462/562 (Spring 2024): Lecture 1 46

FileManager

0 4

…

M-4 M

…

2M-4

……

232-M

…

232 − 4

1 5 M-3 M+1 2M-3 232-M+1 232 − 3

2 6 M-2 M+2 2M-2 232-M+2 232 − 2

3 7 M-1 M+3 2M-1 232-M+3 232 − 1

Main Data Storage Space

FSFile FSFile FSFile……



Summary
• This lecture

• Introduction & logistics

• Storage hierarchy and storage devices

• Disk space management

• Next lecture
• Buffer management

• File organization in DBMS

• Data storage layout

• Project 1 released
• Due 2/1 23:59 PM EST (lab 0), 2/4 23:59 PM EST (lab 1)

CSE462/562 (Spring 2024): Lecture 1 47


	Slide 1: CSE462/562: Database Systems (Spring 24)
	Slide 2: Today’s agenda
	Slide 3: What is a Database?
	Slide 4: What’s a DataBase Management System?
	Slide 5: Why using a DataBase Management System? 
	Slide 6: How to manage a database?
	Slide 7: How to manage a database?
	Slide 8: How to manage a database?
	Slide 9: How to manage a database?
	Slide 10: How to manage a database?
	Slide 11: Why using a DataBase Management System?
	Slide 12: What dose this course cover?
	Slide 13: Why should I care about DBMS internals?
	Slide 14: Why should I care about DBMS internals?
	Slide 15: Logistics
	Slide 16: Logistics
	Slide 17: Logistics
	Slide 18: Grading
	Slide 19: Exams and Assignments
	Slide 20: Course project
	Slide 21: Course project
	Slide 22: Project 1
	Slide 23: Project/assignment submission & late policy
	Slide 24: Academic Integrity Policy
	Slide 25: More on Academic Integrity Policy
	Slide 26: Short break
	Slide 27: Big Picture
	Slide 28: Typical (& oversimplified) computer architecture
	Slide 29: Storage Hierarchy
	Slide 30: Data Transfers
	Slide 31: Volatile storage
	Slide 32: Why not store everything in memory?
	Slide 33: Non-volatile storage
	Slide 34: Closer look at non-volatile storage
	Slide 35: Magnetic disk organization
	Slide 36: Magnetic disk I/O latency
	Slide 37: Impact of I/O pattern on magnetic disk
	Slide 38: Flash memory / solid state drive
	Slide 39: Flash memory / solid state drive
	Slide 40: Flash memory / solid state drive
	Slide 41: Big Picture
	Slide 42: File System Interface
	Slide 43: File System Interface
	Slide 44: File System Interface
	Slide 45: Disk Space Management
	Slide 46: Disk Space Management in course project Taco-DB
	Slide 47: Summary

