
CSE462/562: Database Systems (Spring 24)

Lecture 2: Buffer Management
Data Storage Layout

2/5/2024

Big Picture

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API

Buffer Management

CSE462/562 (Spring 2024): Lecture 2 2

How does database access data pages?
• Data pages are stored in disk file

• suppose we want to count how many rows there are in a database table

• need to scan all pages

• page must be loaded into memory before any computation happens

db.dat

p0 p1 p2 p3 … pnp0 p1 p2 p3 pn

Read: ~10 ms Computation: < 1 𝜇𝑠

CSE462/562 (Spring 2024): Lecture 2 3

How does database access data pages?
• Data pages are stored in disk file

• suppose we want to count how many rows there are in a database table

• need to scan all pages

• page must be loaded into memory before any computation happens

db.dat

p0 p1 p2 p3 … pnp1 p2 p3 pn

Read: ~10 ms Computation: < 1 𝜇𝑠

p0

• Repeat for all the n pages
• Execution time dominated by I/O

CSE462/562 (Spring 2024): Lecture 2 4

How does database access data pages?
• Data pages are stored in disk file

• suppose we want to count how many rows there are in a database table

• need to scan all pages

• page must be loaded into memory before any computation happens

• What if we want to scan the data file for multiple passes?
• Option 1: read/write the entire page on demand before reading/writing the integer <- very slow

• Option 2: read all data pages into memory at the beginning <- not scalable

• May not fit in memory

• What to do on modify?

• Immediately write back? Or Flush when program shutsdown?

• Data persistence?

• Solution: buffer pool

CSE462/562 (Spring 2024): Lecture 2 5

Buffer management in DBMS
• Buffer manager manages a fixed-size pool of in-memory page frames which

• are of the same size as the data pages (e.g., 4KB)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Buffer Manager

char *frames =

 malloc(PAGE_SIZE * m bytes);

CSE462/562 (Spring 2024): Lecture 2 6

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

1 HandlePageRequest(pid):

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Spring 2024): Lecture 2 7

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Spring 2024): Lecture 2 8

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Spring 2024): Lecture 2 9

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i // i = 0

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Spring 2024): Lecture 2 10

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i // i = 0

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

CSE462/562 (Spring 2024): Lecture 2 11

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i // i = 0

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

&frames[0]

Cost: 1 I/O

CSE462/562 (Spring 2024): Lecture 2 12

Handling a page request (buffer hit)
• Handling page request

• Suppose we want to read the same page again (pid = 100)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

1 HandlePageRequest(pid):

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

CSE462/562 (Spring 2024): Lecture 2 13

Handling a page request (buffer hit)
• Handling page request

• Suppose we want to read the same page again (pid = 100)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

second request
for pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

CSE462/562 (Spring 2024): Lecture 2 14

Handling a page request (buffer hit)
• Handling page request

• Suppose we want to read the same page again (pid = 100)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

second request
for pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i] // i = 0

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

&frames[0]

Cost: 0 I/O

CSE462/562 (Spring 2024): Lecture 2 15

Map page numbers to buffer frames
• How to implement line 2?

• Need to store the page numbers, but where?

• For each buffer frame, we maintain a metadata structure which includes pid.

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

2 if pid exists in some buffer frame i:

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

CSE462/562 (Spring 2024): Lecture 2 16

Map page numbers to buffer frames
• How to implement line 2?

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

2 if pid exists in some buffer frame i:

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

for (BufferId i = 0; i < m; ++i) {

 if (meta[i].pid == 100)

 return i;

}

return InvalidBufferId;

O(m) time -- slow!

CSE462/562 (Spring 2024): Lecture 2 17

Map page numbers to buffer frames
• How to implement line 2?

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

2 if pid exists in some buffer frame i:

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

h(pid) 0 1 2 … K-1

BufferId Hash table H

suppose h(100) == 2

0

if (H.find(100) != H.end())

 return H[100];

return InvalidBufferId

O(1) time in expectation

CSE462/562 (Spring 2024): Lecture 2 18

Map page numbers to buffer frames
• Practical consideration for hash tables

• DBMS usually has its own hash tables implementation for buffer manager -- why?

• memory constraints, efficiency, concurrency control, …

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

h(pid) 0 1 2 … K-1

BufferId Hash table H0

CSE462/562 (Spring 2024): Lecture 2 19

Map page numbers to buffer frames
• Practical consideration for hash tables

• For Project 2: feel free to use libraries (e.g., absl::flat_hash_map)

• Tips for time and memory efficiency: avoid rehashing

• Set the initial bucket count K >= m / max_load_factor()

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

h(pid) 0 1 2 … K-1

BufferId Hash table H0

CSE462/562 (Spring 2024): Lecture 2 20

Buffer eviction
• What if we run out of buffer frames?

• e.g., we are scanning a table with N = 100 pages, but buffer pool size m = 10

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 100
request pid = 110

CSE462/562 (Spring 2024): Lecture 2 21

Buffer eviction
• What if we run out of buffer frames?

• Buffer eviction: choose a victim to remove from the buffer pool

• Several possible policies (more on this later)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 100
request pid = 110

CSE462/562 (Spring 2024): Lecture 2 22

Buffer eviction
• What if we run out of buffer frames?

• Buffer eviction: choose a victim to remove from the buffer pool

• Several possible policies (more on this later)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109
request pid = 110

CSE462/562 (Spring 2024): Lecture 2 23

Buffer eviction
• What if we run out of buffer frames?

• Buffer eviction: choose a victim to remove from the buffer pool

• Several possible policies (more on this later)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
request pid = 110

CSE462/562 (Spring 2024): Lecture 2 24

Page requested for writes
• Potential problem with page eviction?

• What if the evicted page is modified? (e.g., UPDATE A SET x = x + 10 WHERE …)

• We must write modified page back before eviction

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 100
dirty = true dirty = false dirty = true dirty = true

request pid = 110

dirty = false dirty = false

WritePage(100, &frames[0])
CSE462/562 (Spring 2024): Lecture 2 25

Page requested for writes
• Potential problem with page eviction?

• What if the evicted page is modified? (e.g., UPDATE A SET x = x + 10 WHERE …)

• We must write modified page back before eviction

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109
dirty = false dirty = true dirty = true

request pid = 110

dirty = false dirty = false

CSE462/562 (Spring 2024): Lecture 2 26

Page requested for writes
• Potential problem with page eviction?

• What if the evicted page is modified? (e.g., UPDATE A SET x = x + 10 WHERE …)

• We must write modified page back before eviction

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true

request pid = 110

dirty = false dirty = false

ReadPage(110, &frames[0])
CSE462/562 (Spring 2024): Lecture 2 27

Buffer pins
• Problems with concurrency

• One thread reading a block while the other tries to evict it

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false

T1: char * frame = BufMgr.HandlePageRequest(110) // &frames[0]

CSE462/562 (Spring 2024): Lecture 2 28

Buffer pins
• Problems with concurrency

• One thread reading a block while the other tries to evict it

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p99

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 99
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false

T1: char * f1 = BufMgr.HandlePageRequest(110)

T2: char * f2 = BufMgr.HandlePageRequest(99)

// &frames[0]

// &frames[0]

f1 now contains a wrong page for T1

CSE462/562 (Spring 2024): Lecture 2 29

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 0 pin_count = 0 pin_count = 0 pin_count = 0

CSE462/562 (Spring 2024): Lecture 2 30

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 1 pin_count = 0pin_count = 0 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

CSE462/562 (Spring 2024): Lecture 2 31

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 1 pin_count = 0pin_count = 1 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

T2: BufferId b2 = BufMgr.PinPage(99, &f2) // b2 = 1

CSE462/562 (Spring 2024): Lecture 2 32

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 1 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

T2: BufferId b2 = BufMgr.PinPage(99, &f2) // b2 = 1

T1: BufMgr.UnpinPage(b1)

CSE462/562 (Spring 2024): Lecture 2 33

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 1 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

T2: BufferId b2 = BufMgr.PinPage(99, &f2) // b2 = 1

T1: BufMgr.UnpinPage(b1)

Question: are buffer pins necessary when the DBMS is single-threaded?

Yes. Think about why?

CSE462/562 (Spring 2024): Lecture 2 34

Eviction policy
• How do we choose a victim for eviction?

• Randomly? The one with the lowest buffer ID that is not pinned? (Inefficient!)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 0 pin_count = 0 pin_count = 0 pin_count = 0

CSE462/562 (Spring 2024): Lecture 2 35

Eviction policy
• Eviction policy (aka replacement policy)

• An algorithm for choosing unpinned frames when there’s no free frame

• It can have huge impacts on the # of I/Os, depending on the access pattern

• Many common choices:

• Least recently used (LRU)

• Most recently used (MRU)

• Clock

• Database workload specific policies

• …

CSE462/562 (Spring 2024): Lecture 2 36

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount

CSE462/562 (Spring 2024): Lecture 2 37

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount

p1 p2 p3

CSE462/562 (Spring 2024): Lecture 2 38

1 1 1

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 0 1

p1 p2 p3

LRU list:

H 1
next

prev

CSE462/562 (Spring 2024): Lecture 2 39

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 0 0

p1 p2 p3

LRU list:

H 1 2
next

prev

How to implement in practice?
Exercise: how to remove a node in the middle of LRU list when there’s a buffer hit?

CSE462/562 (Spring 2024): Lecture 2 40

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 0 0

p1 p2 p3

LRU list:

H 2
next

prev

1 victim for eviction

p4

1

CSE462/562 (Spring 2024): Lecture 2 41

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages that were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Problems?
• Sequential flooding:

• # buffer frames < # pages in file means every existing page in the buffer gets evicted

• Prevents buffer hit for other transactions working on other files

• DB may know the access pattern before hand so that it can adapt its replacement policies
• e.g., using a small ring buffer for sequential scan to avoid flooding the entire buffer pool

CSE462/562 (Spring 2024): Lecture 2 42

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance

10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

CSE462/562 (Spring 2024): Lecture 2 43

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance

10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

0

clock bit
cleared

CSE462/562 (Spring 2024): Lecture 2 44

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance

• Why this might be faster and easier to implement
than LRU?
• Hint: put the clock bit into the buffer meta structures

• scan buffer meta structures instead

10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

0

evicted

CSE462/562 (Spring 2024): Lecture 2 45

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance

• Alternative: third/fourth/… chance
• allowing clock counters up to 2/3/…

10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

CSE462/562 (Spring 2024): Lecture 2 46

Buffer flush
• When are dirty pages written back to disk?

• When evicted

• During shutdown

• Forced flush: flushing certain dirty pages to disk

• when data need to be persisted for data consistency

• only unpinned page may be flushed

• other constraints apply (discussed later this semester)

CSE462/562 (Spring 2024): Lecture 2 47

DBMS vs. OS File System

OS does disk space & buffer management as well: why not let OS manage these tasks?

• Some limitations, e.g., files can’t span disks.

• Buffer management in DBMS requires ability to:
• pin a page in buffer pool, force a page to disk & order writes (important for implementing CC,

concurrency control, & recovery)

• adjust eviction policy, and prefetch pages based on access patterns in typical DB operations.

CSE462/562 (Spring 2024): Lecture 2 48

Big Picture

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Disk space/File management

Query Execution

SQL Parser/API

Buffer Management

File Organization/Access Methods

CSE462/562 (Spring 2024): Lecture 2 49

Relational database
• A relational Database is logically a collection of tables (aka relations)

• Table schema: each table has one or more fields (aka columns)
• Each field has a type and (usually) a name

• Table instance: a table is a (multi-)set of records (aka rows/tuples)
• Each record has one value or NULL for each field in the table schema

• The field type dictates the set of valid values

sid name login

100 Alice alicer34

101 Bob bob5

102 Charlie charlie7

103 David davel

student

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

CSE462/562 (Spring 2024): Lecture 2 50

Database storage architecture
• Mapping from relational database to physical storage

• Database -> files

• Records -> contiguous bytes on fixed-size pages (e.g., 4KB)

• Assumption: each record fits in a page

• What if a record does not fit?

• What about relations?
One/several file(s) per relation? Mixing records from correlated relations in one/several file(s)?

sid name login

100 Alice alicer34

101 Bob bob5

102 Charlie charlie7

103 David davel

student

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

File
File

pagepage

pagepage

Record
Record

Record
Record

Record
Record
Record

Record
Record

CSE462/562 (Spring 2024): Lecture 2 51

Record format: fixed-length
• Fixed-length record

• Assuming all fields F1, F2, F3, … have known (maximum) length

• Denote the maximum lengths as L1, L2, L3, …

• Base address B: may be a file offset or a memory address

• Offset of field 𝐹𝑖 = σ𝑗=1
𝑖−1 𝐿𝑖

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address of F3 = B+L1+L2

Example: consider the enrollment table E(sid: INT4, semester: CHAR(3), cno: INT4, grade: FLOAT)

sid semester cno grade

0Offsets 4 7 11 15

CSE462/562 (Spring 2024): Lecture 2 52

Record format: fixed-length
• Fixed-length record

• How to handle NULLs?

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address of F3 = B+L1+L2

CSE462/562 (Spring 2024): Lecture 2 53

Record format: fixed-length
• Fixed-length record

• How to handle NULLs?

• Null bitmap: set the ith bit if Fi is NULL. Otherwise, clear the ith bit.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address of F3 = B+⌈#𝑁𝐹/8⌉+L1+L2

Example: consider the enrollment table E(sid: INT4, semester: CHAR(3), cno: INT4, grade: FLOAT), NF = 4

sid semester cno grade

0Offsets 5 8 12 16

Null bitmap

⌈#𝑁𝐹/8⌉

#NF: number of nullable fields

1

Null bitmap

CSE462/562 (Spring 2024): Lecture 2 54

Address alignment in records
• Address alignment requirements?

• Alignment example: to read/write a 32-bit integer in memory, its 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑚𝑜𝑑 4 == 0

• Most architecture has address alignment requirements

• Some strictly enforces alignment (most RISC arch, e.g., ARM v5 or earlier)

• Some don’t but have restrictions/performance loss/atomicity issues (e.g., x86_64/newer ARM)

• By default, compilers automatically align values properly

• DB records? Two choices:

• Pack everything, and memcpy the field before access

• Less efficient, but save space

• Align offsets manually

• More efficient field access, but waste space

struct A {

 int32_t x;

 int16_t y;

 int64_t z;

};

// alignof(A) == 8

// offsetof(A, x) == 0

// offsetof(A, y) == 4

// offsetof(A, z) == 8 (not 6!)

CSE462/562 (Spring 2024): Lecture 2 55

Address alignment in records
• Example: consider the enrollment table E(sid: INT4, semester: CHAR(3), cno: INT4, grade: FLOAT), NF = 4

• alignment requirements

• INT4: 4

• CHAR: 1

• FLOAT: 4

sid semester grade

0Offsets 5 8 12 161

Null bitmap

packed

aligned

cno

sid semester grade

0Offsets 118 12 161

Null bitmap cno

4 24

padding

Is there any assumption for the fields in an aligned record to be really aligned?
 Base address B must be aligned to the strictest alignment requirement. (depends on arch, OS and DB type system)

CSE462/562 (Spring 2024): Lecture 2 56

Record format: fixed-length
• Problem with fixed-length record?

• What if we have a variable-length field whose maximum length >> average length

• Wastes space

Example: consider the student table S(sid: INT4, name: VARCHAR(128), login: VARCHAR(32))

aligned

sid name login

0Offsets 8 1361

Null bitmap

4 168

Solution: variable-length records

CSE462/562 (Spring 2024): Lecture 2 57

Record format: variable-length
• Variable-length record

• Two approaches:

• Encode field length in an offset array (e.g., stores the end offset of each field)

• random access to fields given B, but takes more space

• Using self-contained data field (with separator/encoded length)

• Computed offsets (e.g., offset of F3 = L1 + L2); but may be more compact

\0

Field Delimited by Special Symbols

F1 F2

\0

Field Delimited prefixed with its length

10 20

10 20 30 50

F3 F4

F1 F2 F3 F4

Base address (B)

CSE462/562 (Spring 2024): Lecture 2 58

Record format: variable-length
• Example: consider a record in S with (sid = 100, name = ‘Alice’, login = ‘aa’), NF = 3

• Two approaches:

• Encode field length in an offset array (e.g., stores the end offset of each field)

• assuming offsets are stored as int16_t

• Using self-contained data field (with separator/encoded length)

• Computed offsets (e.g., offset of F3 = L1 + L2); but may be more compact

aligned

sid name login

0Offsets 8 17

100 Alice aa0

1

Null bitmap

2 19

12

4

17 19

6

end offsets

12 24

aligned

sid name login

0Offsets 8 17

100 Alice\0 aa\00

1

Null bitmap

4 14 24

CSE462/562 (Spring 2024): Lecture 2 59

Record format: variable-length
• Example: consider a record in S with (sid = 100, name = ‘Alice’, login = ‘aa’), NF = 3

• Many possible designs with minor tweaks for different space/time efficiency trade-offs

• Can also combine both fixed-length and variable-length record formats

• Encode field length in an offset array (e.g., stores the end offset of each field)

• assuming offsets are stored as int16_t

• Example tweaks and assumption:

• Fixed-length fields appear before variable-length fields => have fixed offsets

• (Real) record length without the trailing padding stored somewhere else

aligned

sid name login

0Offsets 8 15

100 Alice aa0

1

Null bitmap

2 4

13

end offsets

13

sid name login

0Offsets 8 17

100 Alice aa0

1

Null bitmap

2 19

12

4

17 19

6

end offsets

12 24

CSE462/562 (Spring 2024): Lecture 2 60

Page layout for fixed-length records
• Why not storing record consecutively in a file?

• Linear time to update/delete!

• How do we store records in fixed-size pages?
• Fixed-length record: easy (packed vs unpacked)

• Not commonly used as it wastes space

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

number
of records

number
of slots

CSE462/562 (Spring 2024): Lecture 2 61

Page layout for variable-length records
• What about variable-length records?

• Solution: slotted data page Page i

Rid = (i,N)

Rid = (i,1)

Rid = (i,2)

offset
to the free space

Slot array

N . . . 2 1

20 100 40 N

slots

Stores offsets to the beginning of the page

Free space

Free space

Can move records within a page without changing its record id.

CSE462/562 (Spring 2024): Lecture 2 62

Page layout for variable-length records
• What about variable-length records?

• Solution: slotted data page Page i

Rid = (i,N)

Rid = (i,1)

Rid = (i,2)

offset
to the free space

Slot array

N . . . 2 1

20 100 40 N

slots

Stores offsets to the beginning of the page

Free space

Occupied space

Design space:
• Store record length with record / in slot array? Alignment?
• Allow free space within the occupied space?

• Eager vs lazy compaction?
• Optional page header? CSE462/562 (Spring 2024): Lecture 2 63

Organizing pages in a heap file
• Heap file is the most basic and common way of managing pages for a single relation

• Consists of a collection of fixed-size pages

• Pages/records are unordered

• Heap files must support
• Efficient insertion/deletion/update of records

• Efficient access of a record

• Efficient enumeration of all the records

• Management of free space (also managed by disk space manager/file system)

• Note
• A heap file does not necessarily map to a single file on FS

• A heap file can span multiple FS files (e.g., PostgreSQL)

• A file on FS does not necessarily only store pages for a single heap file

• All heap files are stored in a single FS File (i.e., single-file DBMS such as SQLite)

• Our course project Taco-DB: stores pages of different heap files across a number of files on FS
CSE462/562 (Spring 2024): Lecture 2 64

Organizing pages in a heap file
• Many possible alternatives and variants

• We consider the most representative two of them

CSE462/562 (Spring 2024): Lecture 2 65

Heap file alternative 1: doubly-linked lists

• The header page id and Heap file name must be stored someplace.

• Database catalog

• Each page contains 2 `pointers’ plus data.
• What are these pointers? Page Number and/or File ID?

• Supports sequential access
• Random access? Only if you know the page number (and the underlying file system supports random seek)

• Does enumerating the pages through the next pointers always incur sequential I/O?
• Not necessarily! Depending on how you allocate pages.

Meta
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Free pages

Allocated Pages

CSE462/562 (Spring 2024): Lecture 2 66

Heap file alternative 2: page directory

• The entry for a page can include the number of free bytes on the page.
• Or use free space bitmap in a (separate) contiguous space.

• The directory is a collection of pages; linked list implementation is just one alternative.
• Can also allocate contiguous pages for page directory for faster random access

and/or using hierarchical page directory

• PD is much smaller than the all data pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

CSE462/562 (Spring 2024): Lecture 2 67

Database catalog
• How does DBMS remember the layout?

• Catalogs are DBMS defined relations that
• stores meta-information about

• Relation schemas
• Physical storage format and location
• And many other important internal states

• Can be implemented as regular relations

TABID TABNAME TABFPATH

1 TABLE /dbdata/1

2 COLUMN /dbdata/2

100 STUDENT /dbdata/100

101 ENROLLMENT /dbdata/101

Table

TABID COLID COLNAME COLTYPNAME

1 0 TABID OID

1 1 TABNAME VARCHAR(64)

1 2 TABFPATH VARCHAR(256)

2 0 TABID OID

2 1 COLID INT2

2 2 COLNAME VARCHAR(64)

2 3 COLTYPNAME VARCHAR(64)

100 0 SID SERIAL

100 1 NAME VARCHAR(32)

100 2 LOGIN VARCHAR(40)

101 0 SID INTEGER

101 1 SEMESTER CHAR(3)

101 2 CNO INTEGER

101 3 GRADE DOUBLE

Column

CSE462/562 (Spring 2024): Lecture 2 68

Summary
• This lecture

• Buffer management (Buffer Pool, Eviction Policies)

• Data storage layout (Heap file, Data Page, Record)

• Next time:
• Access methods and Index files

• Hashing techniques

• Reminders
• Homework assignment 1 released today; due 2/18 23:59 pm.

• Use Piazza or office hours to seek clarification if needed.

• Project 2 will be released on Wednesday, 2/7, due 2/25 23:59 pm.

CSE462/562 (Spring 2024): Lecture 2 69

	Slide 1: CSE462/562: Database Systems (Spring 24)
	Slide 2: Big Picture
	Slide 3: How does database access data pages?
	Slide 4: How does database access data pages?
	Slide 5: How does database access data pages?
	Slide 6: Buffer management in DBMS
	Slide 7: Handling a page request (buffer miss)
	Slide 8: Handling a page request (buffer miss)
	Slide 9: Handling a page request (buffer miss)
	Slide 10: Handling a page request (buffer miss)
	Slide 11: Handling a page request (buffer miss)
	Slide 12: Handling a page request (buffer miss)
	Slide 13: Handling a page request (buffer hit)
	Slide 14: Handling a page request (buffer hit)
	Slide 15: Handling a page request (buffer hit)
	Slide 16: Map page numbers to buffer frames
	Slide 17: Map page numbers to buffer frames
	Slide 18: Map page numbers to buffer frames
	Slide 19: Map page numbers to buffer frames
	Slide 20: Map page numbers to buffer frames
	Slide 21: Buffer eviction
	Slide 22: Buffer eviction
	Slide 23: Buffer eviction
	Slide 24: Buffer eviction
	Slide 25: Page requested for writes
	Slide 26: Page requested for writes
	Slide 27: Page requested for writes
	Slide 28: Buffer pins
	Slide 29: Buffer pins
	Slide 30: Buffer pins
	Slide 31: Buffer pins
	Slide 32: Buffer pins
	Slide 33: Buffer pins
	Slide 34: Buffer pins
	Slide 35: Eviction policy
	Slide 36: Eviction policy
	Slide 37: Least Recently Used (LRU) policy
	Slide 38: Least Recently Used (LRU) policy
	Slide 39: Least Recently Used (LRU) policy
	Slide 40: Least Recently Used (LRU) policy
	Slide 41: Least Recently Used (LRU) policy
	Slide 42: Least Recently Used (LRU) policy
	Slide 43: Clock policy
	Slide 44: Clock policy
	Slide 45: Clock policy
	Slide 46: Clock policy
	Slide 47: Buffer flush
	Slide 48: DBMS vs. OS File System
	Slide 49: Big Picture
	Slide 50: Relational database
	Slide 51: Database storage architecture
	Slide 52: Record format: fixed-length
	Slide 53: Record format: fixed-length
	Slide 54: Record format: fixed-length
	Slide 55: Address alignment in records
	Slide 56: Address alignment in records
	Slide 57: Record format: fixed-length
	Slide 58: Record format: variable-length
	Slide 59: Record format: variable-length
	Slide 60: Record format: variable-length
	Slide 61: Page layout for fixed-length records
	Slide 62: Page layout for variable-length records
	Slide 63: Page layout for variable-length records
	Slide 64: Organizing pages in a heap file
	Slide 65: Organizing pages in a heap file
	Slide 66: Heap file alternative 1: doubly-linked lists
	Slide 67: Heap file alternative 2: page directory
	Slide 68: Database catalog
	Slide 69: Summary

