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In this lecture
• Hashing basics

• How to design a good hash function?

• External hash index design

• Hashing-based sketches
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Hashing basics
• Hash function ℎ: 𝑈 → 𝑀

• 𝑈: key domain, 𝑀 = 0,1,2, … 𝑀 − 1

• Deterministic

• Examples:

• Multiplicative hashing for integers: ℎ 𝑥 = 𝑀 ⋅ 𝑓𝑟𝑎𝑐 𝑥 ∗ 𝑎

• 𝑎: a real number with a good mixture of 0s and 1s

• 𝑓𝑟𝑎𝑐 𝑦 : the fractional part of a real number

• can be efficiently implemented as ℎ 𝑥 =
𝑎𝑥

2𝑞 𝑚𝑜𝑑 𝑚 for appropriately chosen integers a, q, M

• String hashing: SHA-1, MD5

• often available off the shelf

• can combine a salt to create different hash functions

• e.g., SHA-1(concat(a, s)) for some randomly chosen string 𝑎

• not that secure, but works well due to its efficiency
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Hashing basics
• (In-memory) hash table

• With a hash function ℎ: 𝑈 → 𝑀

0 1 2 3 … M-2 M-1

h(x) = 2
h(y) = m-2

x y
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Hashing basics
• (In-memory) hash table

• With a hash function ℎ: 𝑈 → 𝑀
• How to handle collision?

• Closed hashing vs open hashing
• Sometimes also called open addressing vs closed addressing

0 1 2 3 … M-2 M-1

h(x) = 2
h(y) = M-2
h(z) = 2

x y

0 1 2 3 … M-2 M-1

x y

closed hashing with 
linear probing

z

open hashing 
with linked list

z
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What might go wrong with hashing?
• Too many items with the same hash value

• Any hash table design will fail in this case

• Why can that happen?
1. Too many entries with the same key?

• Not much that we can do, but we can try to incorporate other fields to make the keys distinct if 
it’s possible for the user to provide the entire key during lookups

• Alternatively, consider using other types of index

2. Hash collision

• Some hash functions are prone to too many hash collisions

• For instance, you’re hashing pointers of int64_t,

• using modular hashing ℎ 𝑥 = 𝑥 𝑚𝑜𝑑 𝑚 with 𝑚 = 2𝑑 for some d is going to leave many 
buckets completely empty
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Designing Good Hash Functions
• Formal set up: let U=[N] denote the numbers {0, 1, 2, . . . , N − 1}.  For any set S ⊆ U, 

where |S|=n, we want to support these efficiently:
• add(x): add the key x to S

• query(x):  is the key q ∈ S?

• delete(x): remove the key x from S

We consider a specific set S. Note that even though S is fixed, we don’t know S ahead of time. Imagine it’s 
chosen by an adversary from 𝑁

𝑛
possible choices.

Our hash function needs to work well for any such a (fixed) set S. 
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Static vs Dynamic
• Static: Given a set S of items, we want to store them so that we can do lookups quickly. 

(e.g., a fixed dictionary). 

• Dynamic: here we have a sequence of insert, lookup, and perhaps delete requests.
We want to do all these efficiently. 
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Hash Function Basics
• We will perform inserts and lookups by 

an array A of M buckets, and a hash function h : U → {0,... ,M − 1} (i.e., h : U → [M]).
Given an element x, the idea of hashing is we want to store it in A[h(x)].
• If N=|U| is small, this problem is trivial. But in practice, N is often big.

• Collision happens when 𝑥 ≠ 𝑦 ∧ ℎ 𝑥 = ℎ(𝑦)
• Open hashing with linked list/overflow pages

• Extendible/linear hashing can be used to alleviate the problem
but can’t handle it well if there is skewness in hash values
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Desirable Properties
• Small probability of distinct keys colliding

• If x ≠ y, then the probability of h(x) = h(y) is “small”. 
• We will see a formal definition of this shortly.

• Small range: we want M to be small.
• At odds with first desired property
• ideally M=O(n) but it takes too much space.

• Small number of bits to store a hash function h. 

• h should be easy to compute

• Given this, the time to lookup an item x is O(length of list A[h(x)])
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Bad News
• One way to spread elements out nicely is to spread them randomly.

• Unfortunately, we can’t just use a random number generator to decide where the next element goes 

• won’t be able to find it again. 

• h should be something “pseudorandom”.

• (Bad news) For any deterministic hash function h (i.e., |H|=1), if |U| ≥ (n − 1)M + 1, there 
exists a set S of n elements that all hash to the same location.
• simple argument via pigeon hole principle

• exercise in homework assignment
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Randomness to Rescue
• Introduce a family of hash functions, H with |H|>1, that h will be randomly chosen from 

for each key (but use the same choice for the same key).

• Universal Hashing: if x ≠ y ∈ S then Prh←H [h(x) = h(y)] ≤ 1/M.

• Examples of universal hashing
• 𝐻 = ℎ 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑀 𝑎, 𝑏 ∈ [𝑝]}

• where 𝑝 ≥ 𝑀 and is a prime number

• Faster alternative

• 𝐻 = ℎ 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 2𝑤+𝑚 𝑑𝑖𝑣 2𝑤

• where 𝑀 = 2𝑚, 𝑎 ∈ {2𝑘 + 1|𝑘 ∈ [0,2𝑤+𝑚−1)}, 𝑏 ∈ 2𝑤/2𝑘 | 𝑘 ∈ 0, 2𝑤/2 (see [1], Thm. 5)
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Property of Universal Hashing
• Property of universal hashing:

• for any set S ⊆ U of size n,

• if we choose h at random in a universal hash family H

• for any x ∈ U (e.g., that we might want to lookup, x may not come from S)

• the expected number of collisions between x and other elements in S is at most n/M.

• Proof: 
• Each y ∈ S (y ≠ x) has at most a 1/M chance of colliding with x by the definition of “universal”. So

• Let 𝐶𝑥𝑦= 1 if x and y collide and 0 otherwise. 

• Let 𝐶𝑥 denote the total number of collisions for x. So, 𝐶𝑥 = σ𝑦∈𝑆∧𝑦≠𝑥 𝐶𝑥𝑦.

• We know E[𝐶𝑥𝑦] = Pr(x and y collide) ≤ 1/M.

• So, by linearity of expectation, E[𝐶𝑥] = σ𝑦∈𝑆∧𝑦≠𝑥 𝐸 𝐶𝑥𝑦 ≤ n/M.
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Perfect Hashing (for static case)
• We say a hash function is perfect for S if all lookups involve O(1) work.

• Naïve method: an 𝑂(𝑛2 ) space solution

• Let H be universal and 𝑀 = 𝑛2 . Then just pick a random h from H and try it out!

• Claim: If H is universal and 𝑀 = 𝑛2 , then Pr ℎ~𝐻 (𝑛𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑆) ≥ 1/2
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Naïve method: 𝑂(𝑛2) space
• Proof:

• Randomly pick a pair of different x and y from S

• How many pairs (x,y) in S are there? 

• 𝑛(𝑛 − 1)/2

• For each pair, the chance they collide is ≤ 1/M by definition of “universal”

• So, Prℎ←𝐻(𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) ≤ 𝑛(𝑛 − 1)/2𝑀 = 𝑛(𝑛 − 1)/2𝑛2 < 1/2.  (by union bound)
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An O(n) space solution (for static S)
• First, hash all values in S into a table of size n using universal hashing.

• This will produce some collisions (unless we are extraordinarily lucky)

• Then, for each bin
• rehash using the naïve method until having zero collisions.

Formally:

• a first-level hash function h and first-level table A, 

• n second-level hash functions h1,... ,hn and n second-level tables A1,... ,An

• To lookup an element x, we first compute i = h(x) and then find the element in Ai [hi(x)].

• We omit the analysis of this method.
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Dynamic S?
• Cuckoo hashing

• Linear space

• Constant lookup time

• Pagh, Rasmus; Rodler, Flemming Friche (2001). "Cuckoo Hashing". Algorithms — ESA 2001
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Hash-based index
• Hash-based index are best for equality searches

• Does not support range searches

• Difference from in-memory hash table
• Page oriented: multiple data entries per hash bucket
• (Usually) open hashing

• Probing needed to physically delete a data entry with closed hashing
• Rehashing is very expensive! (reading + writing all the pages)

• Static vs dynamic hashing techniques
• Static: fixed hash value domain 𝑀

• Easy to implement, no rehashing overhead
• Inefficient if number of records is large

• Dynamic: grow hash value domain over time
• Sometimes needs to rehash

• How to amortize cost?
• Scales gracefully with number of records if the choice of hash function is good
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Static hashing
• # primary pages fixed, allocated sequentially, never de-allocated; overflow pages if 

needed.

• ℎ(𝑘) 𝑚𝑜𝑑 𝑀 = bucket to which data entry with key k belongs. (𝑀 = # of buckets)

h(key) mod M

h
key

Primary bucket pages Overflow pages

1

0

M-1

2*

3*

14*

16*

7* 5*

8*
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Static hashing
• Buckets contain data entries.

• Hash function works on search key field(s) of record r. 
• Use its value MOD N to distribute values over range 0 ... N-1.

• Long overflow chains can develop over time and degrade performance.  
• Extendible and Linear Hashing: dynamic techniques to fix this problem.

h(key) mod M

h
key

Primary bucket pages Overflow pages

1

0

M-1

2*

3*

14*

16*

7* 5*

8*
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Extendible hashing
• When the primary page of a bucket gets full,

• why not doubling the number of buckets and rehash?

• reading and writing all the pages are very expensive!

• Idea: use directory of pointers to buckets (these pointers are page numbers)
• To double number of buckets, only need to double the directory size

• Only split the bucket about to overflow. No overflow page!

• Why this works?
• Directory is much smaller than the data files

• Uses a family of hash functions ℎ𝐷: 𝑈 → [2𝐷]

• Trick is how to switch from ℎ𝐷 to ℎ𝐷+1 without rehashing for doubling number of buckets
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2

1

Extendible hashing example
• Hash function ℎ: 𝑈 → 232 (or [264] depending on the type of hash value)

• Define ℎ𝐷 𝑘 = ℎ 𝑘 𝑚𝑜𝑑 2𝐷 -- therefore ℎ𝐷: 𝑈 → [2𝐷]

• Essentially taking the lowest 𝑖 bits of the key hash as the hash value

• Directory: an array of pointers (page numbers) of size 2𝐷

• D: global depth

• Each points to a bucket 𝑝𝑖 (not necessarily unique ones)

• A data entry with key 𝑘 is in 𝑝𝑖 iff ℎ𝐷 𝑘 = 𝑖

• Each bucket has a local depth 𝑑𝑖

• Can be used to determine whether this
bucket is currently shared by two hash values
A bucket is not shared iff D == d_i

• ℎ𝐷 𝑘 may be different in a bucket

• Question: what’s in common? 

• ℎ𝑑𝑖
𝑘 are always the same

2

2

13*00

01

10

11

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C
10*

1* 7*

4* 12* 32* 16*

5*

we denote a data entry its hash 
value by h(r).CSE462/562 (Spring 2024): Lecture 4 22



Handling inserts in extendible hashing
• Find the bucket 𝑝𝑖 where the insertion belongs

• If there’s room, insert it into 𝑝𝑖

• If not, split 𝑝𝑖 before insertion
• increment the local depth 𝑑𝑖

• allocate a new page with the same (new) local depth 

• redistribute the data entries with the new page

• double the global depth if local depth is now larger 
than global depth

• also duplicate the old directory if global depth is 
doubled

• set the pointer for the new page in the directory

2

12

2

13*00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C
10*

1* 7*

4* 12* 32* 16*

5*
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Example: inserting 21∗, 19∗, 15∗

• 21 = 10101 2

• 19 = 10011 2

• 15 = 01111 2

2

12

2

13*00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C
10*

1* 7*

4* 12* 32* 16*

5*

2

2

Bucket D7*

ℎ 𝑘  𝑚𝑜𝑑 22 = 1

ℎ 𝑘  𝑚𝑜𝑑 22 = 3

21*

19* 15*
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Example: inserting 20∗ (causing doubling)
• 20 = 10100 2

• Last 2 bits (00) tell us 20* belongs to A or E  
Last 3 bits needed to tell which.
• Global depth of directory: Max # of  bits needed to tell 

which bucket an entry belongs to.

• Local depth of a bucket: # of bits used to determine if an 
entry belongs to this bucket.

• When does bucket split cause directory 
doubling?
• Before insert, local depth of bucket = global depth.  Insert 

causes local depth to become > global depth; directory is 
doubled by copying it over and `fixing’ pointer to split 
image page.  

2

22

2

13*00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C
10*

1* 21*

4* 12* 32* 16*

5*

2

Bucket D7* 19* 15*

3

Bucket E

3

4* 12*

3

0

0

0

0

100

101

110

111
20*
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Notes on extendible hashing
• If directory fits in memory, equality search answered with one disk access; else two.

• If the distribution of hash values is skewed, directory can grow large.

• Multiple entries with same hash value cause problems!

• What if we still don’t have space after split?

• Delete:  If removal of data entry makes bucket empty, can be merged with `split image’.  
If each directory element points to same bucket as its split image, can halve directory. 
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Linear hashing
• Another dynamic hashing scheme that handles long overflow chains without using a 

directory.

• Page to split is chosen in a round-robin fashion, not where it will overflow
• LH allows using temporary overflow pages

• If the hash values are reasonably uniform -- overflows will be resolved quickly
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Handling insertion in linear hashing
• Also uses a family of hash functions

• ℎ𝑖 𝑘 = ℎ 𝑘 𝑚𝑜𝑑 2𝑖𝑁

• Initial size 𝑁 does not need to be power of 2

• Proceeds in “rounds”.
Current round number is called level 𝑙 >= 0

• There are 𝑁𝑙 = 𝑁 ∗ 2𝑙 buckets at the beginning
• Next initially set to 0

• Invariant:

• Buckets [0, Next) has been split in this round

• Buckets [Next, 𝑁𝑙) are to be split in this round

• On insert
• If the bucket for insertion is full

• Add an overflow page and insert the data entry

• Split Next bucket and increment Next

• Use ℎ𝑙+1 to redistribute entries for a split bucket

• Round ends when 𝑁𝑒𝑥𝑡 = 𝑁𝑙
• Start a new round, 𝑁𝑒𝑥𝑡 ← 0, 𝑙 ← 𝑙 + 1

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

Primary pages
ℎ0

00

01

10

11

𝑁 = 4, 𝑙 = 0

Next = 0

ℎ1 ℎ0

000 00

001 01

010 10

011 11
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Example: insert 43∗ 101011 2

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

Primary pages

𝑁 = 4, 𝑙 = 0

Next = 0

ℎ1 ℎ0

000 00

001 01

010 10

011 11 43*

ℎ1 ℎ0

000 00

001 01

010 10

011 11

100 00

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

44* 36*

Next = 1

Overflow pages

CSE462/562 (Spring 2024): Lecture 4 29



Example: end of a round
Insert 50∗ 110010 2

32*

9* 25*

66* 18* 10* 34*

31* 35* 7* 11*

44* 36*

5* 37* 29*

14* 30* 22*

Primary pages

𝑁 = 4, 𝑙 = 0

Next = 3

ℎ1 ℎ0

000 00

001 01

010 10

011 11

100 00

101 01

110 10

Overflow pages

43*
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Example: end of a round (cont’d)
Insert 50∗ 110010 2

32*

9* 25*

66* 18* 10* 34*

31* 35* 7* 11*

44* 36*

5* 37* 29*

14* 30* 22*

Primary pages

𝑁 = 4, 𝑙 = 0

Next = 3

ℎ1 ℎ0

000 00

001 01

010 10

011 11

100 00

101 01

110 10

111 11

Overflow pages

43*

50*

43* 35* 11*

31* 7*

𝑁 = 4, 𝑙 = 1

Next = 0

ℎ1

000

001

010

011

100

101

110

111
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Linear Hashing Search Algorithm
• To find the bucket for a data entry 𝑘∗

• Compute ℎ𝑙 𝑘 = ℎ 𝑘 𝑚𝑜𝑑 2𝑙𝑁

• If ℎ𝑙 𝑘 ≥ 𝑁𝑒𝑥𝑡

• Bucket ℎ𝑙 𝑘 is the bucket for 𝑘∗ (because it hasn’t been split in this round)

• Otherwise,

• 𝑘∗ could belong to either bucket ℎ𝑙 𝑘 or bucket ℎ𝑙 𝑘 + 2𝑙𝑁

• Compute ℎ𝑙+1 𝑘 to find out

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

Primary pages

𝑁 = 4, 𝑙 = 0

Next = 0

ℎ1 ℎ0

000 00

001 01

010 10

011 11 43*

ℎ1 ℎ0

000 00

001 01

010 10

011 11

100 00

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

44* 36*

Next = 1

Overflow pages

Find 32∗?
Find 14∗?
Find 43∗?
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Notes on linear hashing
• If hash values are skewed

• because of key skew or bad hash function

• then will still have long overflow chains

• Delete: the reverse of insertion algorithm

CSE462/562 (Spring 2024): Lecture 4 33



Composite keys in hash index
• Composite key: multiple fields as the key (f1, f2, …, fk)

• How to handle composite keys in hash index?
• Combine the hash values of each field together

• Many libs available, e.g., boost::hash_combine, absl::Hash::combine(), etc …

e.g., in boost:
seed ^= hash_value + 0x9e3779b9 + (seed<<6) + (seed>>2);

• Search with composite keys
• Must specify all the fields, equality search only

• Can’t perform partial key search

• e.g., hash index on (sid, login)

• may be used for predicate sid = 12345 AND login = ‘alice’

• but not sid = 12345

• nor login = ‘Alice’
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Sketches
• Sketches - compact data structures for approximate query answering

• many relies on hashing

• Examples
• Frequency estimation: Count-Min, AMS sketch

• Set membership testing: bloom filter

• Distinct counting: HyperLogLog

• We will examine bloom filter today as an example
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Set membership testing
Exact set membership testing

Given a finite Universe 𝑈, and a set of distinct items 𝑆 = 𝑥1, 𝑥2, … , 𝑥𝑁 ⊂ 𝑈,
for any 𝑥 ∈ 𝑈, we want to answer whether 𝑥 ∈ S.

Approximate membership testing

Given a finite Universe 𝑈, and a set of distinct items 𝑆 = 𝑥1, 𝑥2, … , 𝑥𝑁 ⊂ 𝑈,

for any 𝑥 ∈ 𝑈, we want to answer whether 𝑥 ∈ 𝑆 with some errors as follows:

(1) If 𝑥 ∈ 𝑆, we always answer yes.

(2) If 𝑥 ∉ 𝑆, we may answer yes or no.

We want the false positive rate Pr 𝑥 ∉ 𝑆 ∧ 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑦𝑒𝑠 to be small.
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Exact set membership testing
• Hash table H

• Insertion: for each 𝑥𝑖 ∈ 𝑆, add it to 𝐻

• Query: for any 𝑥 ∈ 𝑈, probe 𝐻 with ℎ(𝑥)

• Space: 𝑂 𝑆 log 𝑈

• Query: 𝑂 1 in expectation (or 𝑂 1 in worst case if using Cuckoo hashing)
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0 1 2 3 … M - 2 M - 1

𝑥1 𝑥𝑁 𝑥2

𝑥

probe 𝐻 for with ℎ 𝑥

𝐻



Exact set membership testing
• If 𝑈 = 𝑥 ∈ 𝒁 | 𝑥 ∈ 0, 𝑈

• can also use a bitmap 𝐵

• Insertion: for each 𝑥𝑖 ∈ 𝑆, set 𝐵 𝑥𝑖 = 1

• Query: for any 𝑥 ∈ 𝑈, check 𝐵 𝑥 == 1?

• Space: 𝑂 𝑈

• Query: 𝑂 1 in worst case
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0 1 2 3 … 𝑈 − 2 𝑈 − 1

0 0 1 0 … 1 0 1

𝑥

𝐵 𝑥 == 1?

≫ 𝑂 𝑆 log 𝑈     if 𝑈 ≫ |𝑆|

𝐵



Approximate set membership testing
• Bloom filter

• Idea: maintain a bitmap over a hash function ℎ: 𝑈 → 𝑀

• Correctness?

• 𝑥 ∈ 𝑆 ⇒ 𝐵 ℎ 𝑥 = 1

• FP rate?

• Depends on the choice of the hash function
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0 1 2 3 … M-2 M-1

0 0 1 0 … 1 0 1

𝑥

𝐵 ℎ(𝑥) == 1?

𝐵

Analysis: suppose ℎ ∈ ℋ where ℋ has a uniformity property: ∀𝑥 ∈ 𝑈, 𝑦 ∈ 𝑀 , 𝑃𝑟 ℎ 𝑥 = 𝑦 =
1

𝑀

 => ∀𝑖 ∈ 𝑈 , Pr 𝐵 𝑖 == 0 = 1 −
1

𝑀

𝑆
≈ 𝑒−

𝑆

𝑀

 => ∀𝑥 ∈ 𝑈 − 𝑆, FP rate = 1 − Pr ℎ 𝑥 == 0 = 1 − 𝑒−
𝑆

𝑀

Problem?

    For FP rate = 𝜀, spaced required: 𝑀 = −
𝑆

ln 1−𝜀

    E.g., 𝜀 = 0.01 ⇒ 𝑀 ≈ 99.5 𝑆  > 𝑆 log 𝑈



Approximate set membership testing
• Bloom filter

• Idea: maintain a bitmap over 𝑘 independent hash functions ℎ1, ℎ2, … , ℎ𝑘: 𝑈 → 𝑀

• Insert x: set 𝐵 ℎ1(𝑥) = 1, B h2 x = 1, … B ℎ𝑘 𝑥 = 1

• Query x: returns 𝐵 ℎ1 𝑥 == 1 ∧ 𝐵 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝐵 ℎ𝑘 𝑥 == 1?

• Correctness?

• 𝑥 ∈ 𝑆 ⇒ 𝐵 ℎ1 𝑥 == 1 ∧ 𝐵 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝐵 ℎ𝑘 𝑥 == 1
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0 1 2 3 … M-2 M-1

0 0 1 0 … 1 0 1

𝑥

𝐵 ℎ1(𝑥) == 1?

𝐵

𝐵 ℎ2(𝑥) == 1?
𝐵 ℎ𝑘(𝑥) == 1?



Approximate set membership testing
• Bloom filter

• Idea: maintain a bitmap over 𝑘 independent hash functions ℎ1, ℎ2, … , ℎ𝑘: 𝐷 → 𝑀

• Insert x: set 𝐵 ℎ1(𝑥) = 1, B h2 x = 1, … B ℎ𝑘 𝑥 = 1

• Query x: returns 𝐵 ℎ1 𝑥 == 1 ∧ 𝐵 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝐵 ℎ𝑘 𝑥 == 1?

• Correctness?

• 𝑥 ∈ 𝑆 ⇒ 𝐵 ℎ1 𝑥 == 1 ∧ 𝐵 ℎ2 𝑥 == 1 ∧ ⋯ ∧ 𝐵 ℎ𝑘 𝑥 == 1

• FP rate?
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0 1 2 3 … M-2 M-1

0 0 1 0 … 1 0 1

𝑥

𝐵 ℎ1(𝑥) == 1?

𝐵

Analysis: suppose ℎ1, ℎ2, … , ℎ𝑘 ∈ ℋ are independent and uniform

 => ∀𝑖 ∈ 𝑈 , Pr 𝐵 𝑖 == 0 = 1 −
1

𝑀

𝑘 𝑆
≈ 𝑒−

𝑘 𝑆

𝑀

 => ∀𝑥 ∈ 𝑈 − 𝑆, FP rate = 1 − Pr ∧1≤𝑖≤𝑘 ℎ𝑖 𝑥 == 0 ≈ 1 − 𝑒−
𝑘 𝑆

𝑀

𝑘

Solving for minimum FP rate:

   𝑘𝑜𝑝𝑡 =
𝑀

|𝑆|
ln 2, 𝜀𝑜𝑝𝑡 = 𝑒

−
𝑀

𝑆
ln 2 2

=> For FP rate = 𝜀, spaced required: 

                 𝑀 = −
ln 𝜀

ln 2 2 |𝑆|

Example: 𝜀 = 0.01 ⇒ 𝑀 ≈ 9.59 𝑆 ≪ 𝑆 log 𝑈 , 𝑘 = 9.59 ln 2 = 7 
𝐵 ℎ2(𝑥) == 1?

𝐵 ℎ𝑘(𝑥) == 1?



Summary
• Today’s lecture

• Hashing techniques and hash indexes

• Reminders
• Project 2 due this Sunday (2/25/2024, 23:59 PM EST)

• HW 2 released today, due in two weeks (3/3/2024, 23:59 PM EST)

• Next lecture
• Tree indexes
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