CSE462/562: Database Systems (Spring 24) Lecture 5: Tree Index 2/26/2024

Range Searches

- Find all the students admitted in or after 2020?
 - If data is in sorted file, we can do binary search to find the first; and then scan to find others.
 - $O\left(\log_2 \frac{N}{R_h}\right) + scan \ cost N$: number of records; B_h : number of records per heap page
 - Cost of binary search can be quite high. Hard to maintain.
- Simple idea: create an index file
 - binary search on the (smaller) index file
 - But the index file could still be quite large
- Solution: build a new level of indirections Take the smallest search

sid	name	major	adm_year
100	Alice	CS	2021
101	Bob	CE	2020
102	Charlie	CS	2021
103	David	CS	2020

Leaf Pages with **Data Entries:** 1) One data entry per record! 2) Sort data entries

Data File With Data Pages

Tree-based Indexes

- *Recall: 3 alternatives for data entries* k*:
 - Data record with key value **k**
 - <k, rid of data record with search key value k>
 - <k, list of rids of data records with search key k>
- Choice is orthogonal to the *indexing technique* used to locate data entries k*.
- Tree-structured indexing techniques support both *range searches* and *equality searches*.
- <u>ISAM</u>: static structure; <u>B+ tree</u>: dynamic, adjusts gracefully under inserts and deletes.

Index Entries

An index entry has the following format: (search key value, page id). The following shows an index page with m index entries (pay attention to the special "left-most pointer")

Note: entry 0 does not have a key; the range is implicitly defined by left child and K1

ISAM

- *Static* structure built based on the content of a heap file.
- Supports insert/delete/search.
 - Overflow pages for excessive insertions

Leaf pages contain data entries.

ISAM Details

- File creation: With data pages in a heap file loaded. Leaf (data) pages allocated sequentially, and data entries sorted by search key; Then index pages allocated. Then space for overflow pages.
 - Index entries: <search key value, page id>; they `direct' search for data entries, which are in leaf pages.
- <u>Search</u>: Start at root; use key comparisons to go to leaf. I/O cost: $O\left(\log_F \frac{N}{B_0}\right)$ F = fan-out, i.e., # entries per index page, N = # data entries, B_0 = # data entries / leaf page
- <u>Insert</u>: Find leaf where data entry belongs, put it there. (Could be on an overflow page).
- *Delete*: Find and remove from leaf; if empty overflow page, de-allocate.
- **Static tree structure**: *inserts/deletes affect only leaf pages*.
 - Not good for files with a lot of insertions/deletions
 - Could have skews/long overflow chains
- No support for variable-length records in the original ISAM design
 - MyISAM supports variable-length records, but no transaction support, no foreign-key integrity constraint support
 - In any case, you should not use ISAM in practice. But it is a good starting point for learning tree indexes.

Example ISAM

- e.g., each node can hold 2 data entries or 1 + 2 index entries
 - no need for `next-leaf-page' pointers. (Why?)

Sequential leaf pages

ISAM Insertion Examples

• Inserting 23*, 48*, 41*, 42*

ISAM Deletion Examples

• Deleting 42*, 51*, 97*

Note that 51 appears in index levels, but 51* not in leaf!

B-Tree: the most widely used index

- Dynamic structure
 - Adapts to insertion/deletion
 - Data entries are stored in the leaf pages; Index entries in internal pages
 - Balanced: all paths from root to leaf page has the same length -- called tree height h
 - There's a min occupancy for each page except for root (usually 50%)
- Each node in the tree is a page in the file
 - B-Tree internal/leaf node \equiv B-Tree internal/leaf page
- Actually, it's a B+-Tree

B-Tree example

Let's assume unique and fixed-length keys for now. Leaf node capacity: B = 4. Fan-out F = 5.

B-Tree search

- Find 28*? 29*? All > 15* and < 30*
 - Starting from root and use key comparison to follow the correct pointers until reaching leaf.
 - To scan a range
 - Locate the lower bound of the key range
 - move right on the data entries until there're no left or you find one that's out of range
 - Can we locate the upper bound and move left instead?

B-Tree insertion

- Find correct leaf L.
 - Which one? see next slide
- Put data entry onto *L*.
 - If *L* has enough space, *done*!
 - Else, must <u>split</u> L (into L and a new node L2)
 - Redistribute entries evenly, <u>copy up</u> middle key.
 - Insert index entry pointing to *L2* into parent of *L* with the middle key.
- This can happen recursively
 - To split index node, redistribute entries evenly, but **push up** middle key. (Contrast with leaf splits.)
- Splits "grow" tree; root split increases height.
 - Tree growth: gets *wider* or *one level taller at top*.

B-Tree insertion example -- inserting 15*

• Inserting 15*

Find the subtree where you would do search for the insertion key.

B-Tree insertion example -- inserting 8*

• Inserting 8*

- Leaf page is full, what now? Split the page!
 - After that, the root page also needs to be split because there's no room for a new index entry

B-Tree insertion example -- inserting 8*

- Observe how minimum occupancy is guaranteed in both leaf and index page splits.
- Note difference between copyup and push-up; be sure you understand the reasons for this.

B-Tree insertion example -- Inserting 8*

Cost of B-Tree insertion: h + 1 to 4h + 2 = O(h) I/Os

Notice that root was split, leading to increase in height.

In this example, we can avoid split by re-distributing entries; however, this is usually not done in practice.

B-Tree deletion

- Start at root, find leaf *L* where entry belongs.
- Remove the entry.
 - If L is at least half-full, done!
 - If L has less than half full,
 - Try to <u>merge</u> L and a sibling sharing a common parent.
 - Pull down the key in the parent if this is an internal page
 - Or *redistribute* keys (i.e., rebalance) between L and a sibling sharing a common parent
 - Need to update the key in the parent after rebalancing
 - Rebalancing is rarely implemented in practice, why?
- If merge occurred, must delete an index entry from parent of *L*. Which one?
 - The one on the right.
- If redistribute occurs, must update the index entry from parent of L. Which one?
 - Still the one on the right.
- Merge could propagate to root, decreasing height.

B-Tree deletion example -- deleting 19*

• Deleting 19* is easy.

Cost = h + 1 I/Os.

• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

- Deleting 20* with merging. Index entry pointing the right sibling is deleted.
 - Internal page is also under-utilized at this point, merge it with sibling.

- Deleting 20* with merging. Index entry pointing the right sibling is deleted.
 - Internal page is also under-utilized at this point, merge it with sibling.
 - Root would have only one pointer at this point if we remove the index entry to the right sibling
 - need to remove the root page at this point

- Deleting 20* with merging. Index entry pointing the right sibling is deleted.
 - Internal page is also under-utilized at this point, merge it with sibling.
 - Root would have only one pointer at this point if we remove the index entry to the right sibling
 - need to remove the root page at this point

Cost = up to 4h I/Os.

- Deleting 20* with rebalancing. Index entry pointing the right sibling is updated.
 - Copy up of the smallest key on the right page

Cost = h + 5 I/Os.

- Deleting 20* with merging. Index entry pointing the right sibling is updated.
 - Copy up of the smallest key on the right page

B-Tree example of non-leaf rebalancing

- Suppose this is the tree we have and we just deleted 24* from the tree
 - which caused a deletion of an index entry on an internal page

B-Tree example of non-leaf rebalacing (cont'd)

- Intuitively, entries are re-distributed by `pushing through' the splitting entry in the parent
- Two choices: either keep 3 or 4 entries on the left page

Bulk loading of a B-Tree

- If we have a large collection of records, and we want to create a B+ tree on some field, doing so by repeatedly inserting records is very slow.
 - Also leads to minimal leaf utilization --- why?
- <u>Bulk loading</u> can be done much more efficiently.
 - fill factor: the default utilization ratio for leaf and internal pages (may vary for leaf and internal pages) typical values: 70%/80%
- Initialization: Sort all data entries, insert pointer to first (leaf) page in a new (root) page.

Bulk loading of a B-Tree

Index entries for leaf pages always • entered into right-most index page just Root 20 above leaf level. When this fills up, it splits. (Split may go up right-most path to 10 **Data entry pages** 35 the root.) not yet in B+ tree • Much faster than repeated inserts, 23 6 12 38 especially when one considers locking! 12* 38* 10* 13* 41* 3* 6* 11* 20* 22* 23* 31* 35* **B6*** 44* 9*

Analysis of B-Tree storage cost

- Suppose the usable page size is P (bytes), each record is r (bytes), the index key is k bytes, record ID or page number is q bytes, and N records in total in the heap file.
- Assume we use alternative 2 for the data entries.
- Bottom-up analysis:
 - Number of pages in the heap file: $M = \left[\frac{N}{|P/r|}\right]$.
 - Number of data entries: N (one per record)
 - Size of a data entry: k + q bytes (without considering alignments)
 - Number of pages in leaf level:

•
$$N' = \left[\frac{N}{\lfloor P/(k+q) \rfloor}\right]$$

• If the average leaf page utilization ratio is μ :

$$N' = \left[\frac{N}{\left[P * u/(k+q)\right]}\right]$$

• Let *B* be the number of data entries per leaf page

•
$$B = \lfloor P * u/(k+q) \rfloor$$

Analysis of B-Tree storage cost

• Internal levels:

fill factor: the default utilization ratio when bulk loading the tree

• Fan-out/number of index entries per page

 $f = \left[\frac{P \times u - q}{k + q}\right] + 1$ (u is the average utilization ratio: [0.5, 1))

- Number of entries in the index level right above the leaf level: N' (one entry per leaf-level page)
- Number of pages required in this level: N'/f
- Number of entries in the level above: N'/f
- Number of pages in the level above: N'/f^2
- Recursively pages in each level:
 - N', N'/f, N'/f² , N'/f³ $1=N'/f^{h-1}$
 - So $h = \left[\log_f N'\right] + 1 = \left[\log_f \left[\frac{N}{B}\right]\right] + 1$
 - total number of internal pages $1 + f + ... + f^{h-1} = \frac{f^{n-1}}{f-1} = O(N') = O(N/B)$
- Total number of pages in a B-Tree: $O(N') = O(\frac{N}{B})$

Data access cost using B-Tree

- Recall clustered vs. unclustered: if order of data records is the same as, or `close to', order of index data entries, then called clustered index.
 - Cost of using B-Tree to access records varies a lot depending on whether it is clustered or not

Cost of range scan with clustered B-Tree index

- All records with key >= 24. Clustered index with alternative 2.
 - 6 I/Os
 - 2 random I/O
 - 4 sequential I/O if heap file is laid out sequentially

Cost of range scan with unclustered B-Tree index

- All records with key >= 24. Unclustered index with alternative 2.
 - 10 I/Os
 - All random I/Os

Cost of range scan with clustered B-Tree file

- All records with key >= 24. Clustered index with alternative 1.
 - 6 I/Os
 - 3 Random I/O
 - 3 Sequential I/O if the leaf level is sequential in the file

Trade-offs with B-Tree

- Clustered B-Tree
 - One per table
 - Both are good for large range scans, small range scans and point lookups
 - Alternative 2/3 (clustered index)
 - A bit easier to maintain can be lax on the heap record order ("close to" the data entry order)
 - Alternative 1 (clustered file)
 - Harder to maintain strictly clustered
 - Need to reorganize the leaf level to make sure they are sequential
 - Save space on data entries (no duplication of keys)
 - Might have larger tree height
- Unclustered B-Tree
 - Usually alternative 2/3
 - Easiest to maintain
 - Not very efficient when range scan covers too many records

B-Tree in practice: page and record layout

- So far, we considered fixed-length keys => fixed-fanout
 - Easy to define page occupancy in terms of number of slots
 - Easy to implement leaf and internal nodes
 - Option 1: alternating pointers and keys
 - Option 2: two arrays for pointers and keys
 - Both with fixed offsets!

B-Tree in practice: page and record layout

- But, we could have variable-length keys
 - Nullable columns, string keys
- How do you organize the B-tree nodes?
 - Use slotted data page

B-Tree in practice: structural modification

- How do you define page utilization?
 - How many bytes are used? How many slots there are?
 - Issues?
- Page split that's usually ok
- Page merge
 - Leaf page merge no problem
 - Internal page merge -- the key to pull down from the parent page may not fit!
- Page rebalance
 - Leaf or internal page rebalance
 - the key to copy/push up may not fit in the parent page!
 - Internal page rebalance:
 - the key to pull down from the parent page may not fit here!
 - Rarely implemented -- also makes concurrency control hard

B-Tree in practice: multi-field keys

- Multi-field keys are totally ordered in the lexicographical order (aka dictionary order)
 - e.g., (a, b, c), order by a first, then b, finally c
- Multi-field keys in B-Tree is very useful
 - You can answer certain queries with predicates of a prefix of the keys
 - For instance, with a B-Tree over (*age*, *gpa*), it may be used for answering the following queries:
 - $age \ge 20 \land age \le 25$
 - $age = 20 \land gpa \ge 3.0$
 - What about $age \ge 20 \land gpa \ge 3.0$?
 - Strategy 1: using B-Tree to locate the first data entries with $(age = 20 \land gpa \ge 3.0) \lor age > 20$ then scan all data entries starting from that
 - Strategy 2: for each of the distinct age >= 20, locate the first data entry with gpa >= 3.0 then scan data entries starting from these first data entries separately (aka index skip scan (e.g., Oracle) /jump scan (e.g., DB2) in various systems)
 Strategy 2 only works when there are few distinct values in the prefix column

B-tree in practice: NULL values

- We need to index NULL values in B-tree indexes
 - because indexed columns may have NULLs
- Caveat: SQL 3-value logic
 - *NULL < anything is unknown!*
 - B-tree requires a total order of the key
- Solution: don't use the SQL 3-value logic
 - For instance, define NULL = NULL, NULL < any non-NULL value
 - Alternatively, NULL = NULL, NULL > any non-NULL value
 - Some systems support both
 - In the course project Taco-DB, we assume NULL < any non-NULL value for indexing

B-Tree in practice: non-unique keys

- So far, we assumed unique keys, but
 - we might create indexes over non-unique columns (e.g., name)
- B-Tree can be modified to support duplicate keys, but
 - How do you find the data entry for a specific record for update?
- What if we still want to uniquely identify keys in the tree?
 - Include record ID as the last column
 - record IDs are always unique
 - Then a search with key in B-Tree only becomes prefix search:
 - e.g., key = (age, gpa), actual key = (age, gpa, record id)
 - Query: $age = 22 \land gpa = 3.7$?
 - Locate the first data entry such that $(age = 22 \land gpa \ge 3.7) \lor age > 22$
 - Then scan the data entries until it falls out of range
 - To uniquely locate a data entry for a record: use the full search key

B-Tree in practice: unique constraints

- B-Tree are often used for enforcing UNIQUE constraints
 - e.g., sid SERIAL PRIMARY KEY
 - e.g., login VARCHAR(20) UNIQUE
- Build unique B-tree index
 - Reject insertion of a data entry whose key already exists in another data entry in the index
 - even if the record id does not match
- However, what about NULLs?
 - Nullable unique column is allowed to contain multiple NULLs (because they are unknown values)
 - Reality: some allow and some don't
 - Some DBMS disallows inserting multiple NULLs into unique B-Tree index
 - non-conformant to SQL, but easier to implement (no special case handling)
 - Some do allow that
 - SQL-conforming, but need special handling logic for that

B-Tree in practice: handling concurrency

- Lock-based (e.g., reader-writer lock, in DBMS jargon: latches)
 - Many issues:
 - Should lock at most c pages at a time (c usually is 1/2/3)
 - Lock coupling order (deadlock avoidance)
 - Insertion:
 - Split will cause key space shift (how does concurrent search handle this?)
 - Root split? How to install the new root with concurrent readers?
 - Deletion (harder):
 - Page merge/reducing tree height: also causes key space changes
 - Some design avoids them by deleting a page only when it's completely empty
 - Some design use mini transactions to handle SMO
 - File space management:
 - What if a page is deleted but a concurrent reader reaches the deleted page?
 - Recovery: what if crashes and we have to roll back a half completed B-tree update?
- Lock-free
 - Using CAS and additional indirection (<u>J. Levandoski, D. Lomet, S. Sengupta. ICDE '13</u>)
 - Other considerations?

B-Tree in practice: key compression

- We want high fan-out \rightarrow low tree height \rightarrow faster query/update
 - But string keys are often quite long (tens of bytes vs 4 bytes/8 bytes)
- Prefix key compression: extract the common prefix and only store the unique suffix
 - Sorted keys tend to have a short common prefix

- Suffice truncation: store only the prefix that is enough for differentiating the subtree range
 - Works for both string/multi-field keys

Dannon Yogurt	David Smith	Devarakonda Murthy	Dan	Dav	Dev	
(1,5)	(2,3)	(2,4)	(1, NULL)	(2,NULL)	(2,4))

Summary

• This lecture

- ISAM
- B-Tree index
 - How to search and scan/insert/delete in B-Tree
 - Analysis of B-Tree index/file
 - B-Tree in practice
- Next lecture
 - More on indexing & cost analysis
- Reminders
 - HW2 due this Sunday (3/3, 23:59 PM EST)
 - Come to office hours (or schedule ad-hoc ones) for project 2 questions
 - Project 3 will start next Monday 3/4 ---- start very early!