
CSE462/562: Database Systems (Spring 24)

Lecture 5: Tree Index

2/26/2024



Range Searches
• Find all the students admitted in or after 2020?

• If data is in sorted file, we can do binary search to find the first; and then scan to find others.

𝑂 log2
𝑁

𝐵ℎ
+ 𝑠𝑐𝑎𝑛 𝑐𝑜𝑠𝑡 -- 𝑁: number of records; 𝐵ℎ: number of records per heap page

• Cost of binary search can be quite high. Hard to maintain.

• Simple idea: create an index file
• binary search on the (smaller) index file
• But the index file could still be quite large

• Solution: build a new level of indirections

sid name major adm_year

100 Alice CS 2021

101 Bob CE 2020

102 Charlie CS 2021

103 David CS 2020

student

Page 1 Page 2 Page N/BPage 3 Data File

With Data Pages

k2k1 k4k3 Leaf Page 2 Leaf Page 3 Leaf Page M

Leaf Pages with 

Data Entries:

1) One data entry 

per record!

2) Sort data entries

k’2 k’Mk’1

Internal pages:

Take the smallest search 

key value from each 

leaf page to build the 

index entries!

CSE462/562 (Spring 2024): Lecture 5 2



Tree-based Indexes

• Recall: 3 alternatives for data entries k*:
• Data record with key value k

• <k, rid of data record with search key value k>

• <k, list of rids of data records with search key k>

• Choice is orthogonal to the indexing technique used to locate data entries k*.

• Tree-structured indexing techniques support both range searches and equality 
searches.

• ISAM: static structure;  B+ tree:  dynamic, adjusts gracefully under inserts and 
deletes.

CSE462/562 (Spring 2024): Lecture 5 3



Index Entries

An index entry has the following format: (search key value, page id). The following shows an index page 
with m index entries (pay attention to the special “left-most pointer”)

Note: entry 0 does not have a key; the range is implicitly defined by left child and K1

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry
separator key

−∞, 𝐾1

or 𝐾0, 𝐾𝑝  
where 𝐾0 is the key of the 
parent page’s index entry 
that points to this page 

𝐾1, 𝐾2 𝐾2, 𝐾3
𝐾𝑚, +∞

or 𝐾𝑚, 𝐾𝑝+1  
where 𝐾𝑝+1 is the key of the 

next index entry of that 
points to this pageQuestion: can we use left-open and right-closed ranges?

CSE462/562 (Spring 2024): Lecture 5 4



ISAM
• Static structure built based on the content of a heap file.

• Supports insert/delete/search.
• Overflow pages for excessive insertions

Leaf pages contain data entries.

Non-leaf

Pages

Pages

Overflow 
page

Primary pages

Leaf

CSE462/562 (Spring 2024): Lecture 5 5



ISAM Details
• File creation:  With data pages in a heap file loaded.

Leaf (data) pages allocated  sequentially, and data entries sorted by search key;
Then index pages allocated.
Then space for overflow pages.

• Index entries:  <search key value, page id>;  they `direct’ search for data entries, which are in leaf pages.

• Search:  Start at root; use key comparisons to go to leaf. 

I/O cost: 𝑂 log𝐹
𝑁

𝐵0
F = fan-out, i.e., # entries per index page, N = # data entries, 𝐵0 = # data entries / leaf page

• Insert:  Find leaf where data entry belongs,  put it there.
(Could be on an overflow page).

• Delete:  Find and remove from leaf; if empty overflow page, de-allocate. 

• Static tree structure:  inserts/deletes affect only leaf pages.
• Not good for files with a lot of insertions/deletions

• Could have skews/long overflow chains

• No support for variable-length records in the original ISAM design
• MyISAM supports variable-length records, but no transaction support, no foreign-key integrity constraint support

• In any case, you should not use ISAM in practice. But it is a good starting point for learning tree indexes.

CSE462/562 (Spring 2024): Lecture 5 6



Example ISAM
• e.g., each node can hold 2 data entries or 1 + 2 index entries

• no need for `next-leaf-page’ pointers.  (Why?)

Sequential leaf pages

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Leaf Pages

Internal

Pages

Primary

−∞, 40

−∞, 20
[20, 33)

[33,40) [40,51) [63, +∞)

[51,63)

40, +∞

CSE462/562 (Spring 2024): Lecture 5 7



ISAM Insertion Examples
• Inserting 23*, 48*, 41*, 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

CSE462/562 (Spring 2024): Lecture 5 8



ISAM Deletion Examples
• Deleting 42*, 51*, 97*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Note that 51 appears in index levels, but 51* not in leaf!
CSE462/562 (Spring 2024): Lecture 5 9



B-Tree: the most widely used index
• Dynamic structure

• Adapts to insertion/deletion
• Data entries are stored in the leaf pages; Index entries in internal pages
• Balanced: all paths from root to leaf page has the same length -- called tree height h

• There’s a min occupancy for each page except for root (usually 50%)

• Each node in the tree is a page in the file
• B-Tree internal/leaf node ≡ B-Tree internal/leaf page

• Actually, it’s a B+-Tree

Internal

Pages

Pages 

(Sorted by search key)

Leaf

CSE462/562 (Spring 2024): Lecture 5 10



B-Tree example

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Data entries (index entries) on the 
same level are sorted in each level.

Pointers to Actual 
Data Pages  (rid)

Heap File for the Data Records

Height h = 3

−∞, 17 17, +∞

Where is the root pointer stored?

27,30
17,27

Let’s assume unique and fixed-length keys for now. Leaf node capacity: 𝐵 = 4. Fan-out 𝐹 = 5.

CSE462/562 (Spring 2024): Lecture 5 11



B-Tree search

• Find 28*? 29*? All > 15* and < 30*
• Starting from root and use key comparison to follow the correct pointers until reaching leaf.
• To scan a range

• Locate the lower bound of the key range
• move right on the data entries until there’re no left or you find one that’s out of range

• Can we locate the upper bound and move left instead?

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29* Pointers to Actual 
Data Pages  (rid)

Heap File for the Data Records

−∞, 17 17, +∞

27,30
17,27

Cost of B-tree search: ℎ I/Os

CSE462/562 (Spring 2024): Lecture 5 12



B-Tree insertion
• Find correct leaf L.

• Which one? see next slide

• Put data entry onto L.
• If L has enough space, done!

• Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L with the middle key.

• This can happen recursively
• To split index node, redistribute entries evenly, but push up middle key.  (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height. 
• Tree growth: gets wider or one level taller at top.

CSE462/562 (Spring 2024): Lecture 5 13



B-Tree insertion example -- inserting 15*
• Inserting 15*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

15* 16*

Find the subtree where you would do search for the insertion key.

CSE462/562 (Spring 2024): Lecture 5 14



B-Tree insertion example -- inserting 8*
• Inserting 8*

Root

17 24 30

2* 3* 5* 7* 14* 15* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

16*

• Leaf page is full, what now? Split the page!
• After that, the root page also needs to be split because there’s no room for a new index entry

CSE462/562 (Spring 2024): Lecture 5 15



B-Tree insertion example -- inserting 8*

• Observe how minimum 
occupancy is guaranteed in both 
leaf and index page splits.

• Note difference between copy-
up and push-up; be sure you 
understand the reasons for this.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is
continues to appear in the leaf.)

copied up and

5 24 30

17

13

Entry to be inserted in parent node.

(Note that 17 is pushed up and only 
appears once in the index. Contrast this 
with a lefa split.

…

CSE462/562 (Spring 2024): Lecture 5 16



B-Tree insertion example -- Inserting 8*

Notice that root was split, leading to increase in height.

In this example, we can avoid split by re-distributing entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Cost of B-Tree insertion: ℎ + 1 to 4ℎ + 2 = 𝑂 ℎ  I/Os

CSE462/562 (Spring 2024): Lecture 5 17



B-Tree deletion
• Start at root, find leaf L where entry belongs.

• Remove the entry.
• If L is at least half-full, done! 
• If L has less than half full,

• Try to merge L and a sibling sharing a common parent.
• Pull down the key in the parent if this is an internal page

• Or redistribute keys (i.e., rebalance) between L and a sibling sharing a common parent
• Need to update the key in the parent after rebalancing
• Rebalancing is rarely implemented in practice, why?

• If merge occurred, must delete an index entry from parent of L. Which one?
• The one on the right.

• If redistribute occurs, must update the index entry from parent of L. Which one?
• Still the one on the right.

• Merge could propagate to root, decreasing height.

CSE462/562 (Spring 2024): Lecture 5 18



B-Tree deletion example -- deleting 19*
• Deleting 19* is easy.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8* 20* 22*

Cost = ℎ +  1 I/Os.

CSE462/562 (Spring 2024): Lecture 5 19



B-Tree deletion example -- deleting 20* with merging
• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

2* 3*

Root

17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

CSE462/562 (Spring 2024): Lecture 5 20



B-Tree deletion example -- deleting 20* with merging
• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

2* 3*

Root

17

24 30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

CSE462/562 (Spring 2024): Lecture 5 21



B-Tree deletion example -- deleting 20* with merging
• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

• Internal page is also under-utilized at this point, merge it with sibling.

2* 3*

Root

17

30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

CSE462/562 (Spring 2024): Lecture 5 22



B-Tree deletion example -- deleting 20* with merging
• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

• Internal page is also under-utilized at this point, merge it with sibling.
• Root would have only one pointer at this point if we remove the index entry to the right sibling

• need to remove the root page at this point

2* 3*

Root

17

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

17 30

Where’s this 17 from?

CSE462/562 (Spring 2024): Lecture 5 23



B-Tree deletion example -- deleting 20* with merging

2* 3*

Root

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

17 30

• Deleting 20* with merging. Index entry pointing the right sibling is deleted.
• Internal page is also under-utilized at this point, merge it with sibling.

• Root would have only one pointer at this point if we remove the index entry to the right sibling

• need to remove the root page at this point

Cost = up to 4ℎ I/Os.

CSE462/562 (Spring 2024): Lecture 5 24



B-Tree deletion example -- deleting 20* with rebalancing

• Deleting 20* with rebalancing. Index entry pointing the right sibling is updated.
• Copy up of the smallest key on the right page

2* 3*

Root

17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

CSE462/562 (Spring 2024): Lecture 5 25



B-Tree deletion example -- deleting 20* with rebalancing

• Deleting 20* with merging. Index entry pointing the right sibling is updated.
• Copy up of the smallest key on the right page

2* 3*

Root

17

27 30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Cost = h + 5 I/Os.

Where’s this 24 from?

Where’s this 27 from?

CSE462/562 (Spring 2024): Lecture 5 26



B-Tree example of non-leaf rebalancing
• Suppose this is the tree we have and we just deleted 24* from the tree

• which caused a deletion of an index entry on an internal page

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

24 deleted from here

CSE462/562 (Spring 2024): Lecture 5 27



B-Tree example of non-leaf rebalacing (cont’d)
• Intuitively, entries are re-distributed by `pushing through’ the splitting entry in the parent 

• Two choices: either keep 3 or 4 entries on the left page

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Where’s this 22 from?

CSE462/562 (Spring 2024): Lecture 5 28



Bulk loading of a B-Tree
• If we have a large collection of records, and we want to create a B+ tree on some field, 

doing so by repeatedly inserting records is very slow.
• Also leads to minimal leaf utilization --- why?

• Bulk loading can be done much more efficiently.
• fill factor: the default utilization ratio for leaf and internal pages (may vary for leaf and internal pages)

typical values: 70%/80%

• Initialization:  Sort all data entries, insert pointer to first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

CSE462/562 (Spring 2024): Lecture 5 29



Bulk loading of a B-Tree

• Index entries for leaf pages always 
entered into right-most index page just 
above leaf level.  When this fills up, it 
splits.  (Split may go up right-most path to 
the root.)

• Much faster than repeated inserts, 
especially when one considers locking!

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

Data entry pages 

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages 

CSE462/562 (Spring 2024): Lecture 5 30



Analysis of B-Tree storage cost
• Suppose the usable page size is 𝑃 (bytes), each record is 𝑟 (bytes), the index key is 𝑘

bytes, record ID or page number is 𝑞 bytes, and 𝑁 records in total in the heap file.

• Assume we use alternative 2 for the data entries.

• Bottom-up analysis:
• Number of pages in the heap file: 𝑀 = ⌈

𝑁

⌊𝑃/𝑟⌋
⌉.

• Number of data entries: N (one per record)
• Size of a data entry: 𝑘 + 𝑞 bytes (without considering alignments)
• Number of pages in leaf level:

• 𝑁′ = ⌈
𝑁

⌊𝑃/(𝑘+𝑞)⌋
⌉

• If the average leaf page utilization ratio is 𝑢:

𝑁′ = ⌈
𝑁

⌊𝑃 ∗ 𝑢/(𝑘 + 𝑞)⌋
⌉

• Let 𝐵 be the number of data entries per leaf page

• 𝐵 = 𝑃 ∗ 𝑢/(𝑘 + 𝑞)

CSE462/562 (Spring 2024): Lecture 5 31



Analysis of B-Tree storage cost
• Internal levels:

• Fan-out/number of index entries per page

𝑓 =
𝑃×𝑢−𝑞

𝑘+𝑞
+ 1 (u is the average utilization ratio: [0.5, 1))

• Number of entries in the index level right above the leaf level: N’ (one entry per leaf-level page)

• Number of pages required in this level: 𝑁′/𝑓

• Number of entries in the level above: 𝑁′/𝑓

• Number of pages in the level above: 𝑁′/𝑓2

• Recursively pages in each level:

• N’, N’/f, N’/f2 , N’/f3 …. 1=N’/fh-1

• So ℎ = log𝑓 𝑁′ + 1 = log𝑓⌈
𝑁

𝐵
⌉ + 1

• total number of internal pages 1 + 𝑓 + … + 𝑓ℎ−1 =
𝑓ℎ−1

𝑓−1
= 𝑂 𝑁′ = 𝑂 𝑁/𝐵

• Total number of pages in a B-Tree: 𝑂 𝑁′ = 𝑂(
𝑁

𝐵
)

fill factor: the default utilization ratio 
when bulk loading the tree

CSE462/562 (Spring 2024): Lecture 5 32



Data access cost using B-Tree
• Recall clustered vs. unclustered: if order of data records is the same as, or `close to’, 

order of index data entries, then called clustered index.
• Cost of using B-Tree to access records varies a lot depending on whether it is clustered or not

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

CSE462/562 (Spring 2024): Lecture 5 33



Cost of range scan with clustered B-Tree index
• All records with key >= 24. Clustered index with alternative 2.

• 6 I/Os
• 2 random I/O
• 4 sequential I/O if heap file is laid out sequentially

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

CSE462/562 (Spring 2024): Lecture 5 34



Cost of range scan with unclustered B-Tree index
• All records with key >= 24. Unclustered index with alternative 2.

• 10 I/Os

• All random I/Os

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

CSE462/562 (Spring 2024): Lecture 5 35



Cost of range scan with clustered B-Tree file
• All records with key >= 24. Clustered index with alternative 1.

• 6 I/Os
• 3 Random I/O
• 3 Sequential I/O if the leaf level is sequential in the file

Root

3934

24* 27* 29* 33* 34* 38* 39*

207 243

……

16 29

CSE462/562 (Spring 2024): Lecture 5 36



Trade-offs with B-Tree
• Clustered B-Tree

• One per table
• Both are good for large range scans, small range scans and point lookups
• Alternative 2/3 (clustered index)

• A bit easier to maintain – can be lax on the heap record order (“close to” the data entry order)
• Alternative 1 (clustered file)

• Harder to maintain – strictly clustered
• Need to reorganize the leaf level to make sure they are sequential

• Save space on data entries (no duplication of keys)
• Might have larger tree height

• Unclustered B-Tree
• Usually alternative 2/3
• Easiest to maintain
• Not very efficient when range scan covers too many records

• Rule of thumb: Scan no more than a tiny fraction of rows 
e.g., 0.01% on 7200 rpm HDD, 0.1% on consumer-level Nand SSD
(empirical value, it may vary depending on your DBMS and storage device)

CSE462/562 (Spring 2024): Lecture 5 37



B-Tree in practice: page and record layout
• So far, we considered fixed-length keys => fixed-fanout

• Easy to define page occupancy in terms of number of slots

• Easy to implement leaf and internal nodes

• Option 1: alternating pointers and keys

• Option 2: two arrays for pointers and keys

• Both with fixed offsets!

header 𝑝0 𝑘1 𝑝1 𝑘2 𝑝2

…..

𝑝𝑓𝑘𝑓

0 H H+q H+q+k H+2q+k H+2q+2k

H+fq+fkH+fq+(f-1)k

header

0 H

𝑝0 𝑝1

𝑝𝑓 𝑘1 𝑘2

𝑘𝑓

…..

H+q

H+fq H+(f+1)q H+(f+1)q+k

H+(f+1)q+(f-1)k

CSE462/562 (Spring 2024): Lecture 5 38



B-Tree in practice: page and record layout
• But, we could have variable-length keys

• Nullable columns, string keys

• How do you organize the B-tree nodes?
• Use slotted data page

Header

slot 1slot 2…slot n

index record 2

unoccupied

child_pid key payload

recid index key

Data entry (alternative 2)

Index entry

CSE462/562 (Spring 2024): Lecture 5 39



B-Tree in practice: structural modification
• How do you define page utilization?

• How many bytes are used? How many slots there are?

• Issues?

• Page split – that’s usually ok

• Page merge
• Leaf page merge – no problem

• Internal page merge -- the key to pull down from the parent page may not fit!

• Page rebalance
• Leaf or internal page rebalance

• the key to copy/push up may not fit in the parent page!

• Internal page rebalance:

• the key to pull down from the parent page may not fit here!

• Rarely implemented -- also makes concurrency control hard

CSE462/562 (Spring 2024): Lecture 5 40



B-Tree in practice: multi-field keys
• Multi-field keys are totally ordered in the lexicographical order (aka dictionary order)

• e.g., (a, b, c), order by a first, then b, finally c

• Multi-field keys in B-Tree is very useful
• You can answer certain queries with predicates of a prefix of the keys 

• For instance, with a B-Tree over 𝑎𝑔𝑒, 𝑔𝑝𝑎 , it may be used for answering the following queries:

• 𝑎𝑔𝑒 ≥ 20 ∧ 𝑎𝑔𝑒 ≤ 25

• 𝑎𝑔𝑒 = 20 ∧ 𝑔𝑝𝑎 ≥ 3.0

• What about 𝑎𝑔𝑒 ≥ 20 ∧ 𝑔𝑝𝑎 ≥ 3.0 ?

• Strategy 1: using B-Tree to locate the first data entries with 
𝑎𝑔𝑒 = 20 ∧ 𝑔𝑝𝑎 ≥ 3.0 ∨ 𝑎𝑔𝑒 > 20

then scan all data entries starting from that

• Strategy 2: for each of the distinct age >= 20, locate the first data entry with gpa >= 3.0

then scan data entries starting from these first data entries separately
(aka index skip scan (e.g., Oracle) /jump scan (e.g., DB2) in various systems)

Strategy 2 only works when there are few distinct values in the prefix column

CSE462/562 (Spring 2024): Lecture 5 41



B-tree in practice: NULL values
• We need to index NULL values in B-tree indexes

• because indexed columns may have NULLs

• Caveat: SQL 3-value logic
• NULL < anything is unknown!

• B-tree requires a total order of the key

• Solution: don’t use the SQL 3-value logic
• For instance, define NULL = NULL, NULL < any non-NULL value

• Alternatively, NULL = NULL, NULL > any non-NULL value

• Some systems support both

• In the course project Taco-DB, we assume NULL < any non-NULL value for indexing

CSE462/562 (Spring 2024): Lecture 5 42



B-Tree in practice: non-unique keys
• So far, we assumed unique keys, but

• we might create indexes over non-unique columns (e.g., name)

• B-Tree can be modified to support duplicate keys, but
• How do you find the data entry for a specific record for update?

• What if we still want to uniquely identify keys in the tree?
• Include record ID as the last column

• record IDs are always unique

• Then a search with key in B-Tree only becomes prefix search:

• e.g., key = (age, gpa), actual key = (age, gpa, record id)

• Query: 𝑎𝑔𝑒 = 22 ∧ 𝑔𝑝𝑎 = 3.7?

• Locate the first data entry such that 𝑎𝑔𝑒 = 22 ∧ 𝑔𝑝𝑎 ≥ 3.7 ∨ 𝑎𝑔𝑒 > 22

• Then scan the data entries until it falls out of range

• To uniquely locate a data entry for a record: use the full search key

CSE462/562 (Spring 2024): Lecture 5 43



B-Tree in practice: unique constraints
• B-Tree are often used for enforcing UNIQUE constraints

• e.g., sid SERIAL PRIMARY KEY

• e.g., login VARCHAR(20) UNIQUE

• Build unique B-tree index
• Reject insertion of a data entry whose key already exists in another data entry in the index

• even if the record id does not match

• However, what about NULLs?
• Nullable unique column is allowed to contain multiple NULLs (because they are unknown values)

• Reality: some allow and some don’t

• Some DBMS disallows inserting multiple NULLs into unique B-Tree index

• non-conformant to SQL, but easier to implement (no special case handling)

• Some do allow that

• SQL-conforming, but need special handling logic for that

CSE462/562 (Spring 2024): Lecture 5 44



B-Tree in practice: handling concurrency
• Lock-based (e.g., reader-writer lock, in DBMS jargon: latches)

• Many issues:
• Should lock at most c pages at a time (c usually is 1/2/3)
• Lock coupling order (deadlock avoidance)
• Insertion:

• Split will cause key space shift (how does concurrent search handle this?)
• Root split? How to install the new root with concurrent readers?

• Deletion (harder):
• Page merge/reducing tree height: also causes key space changes

• Some design avoids them by deleting a page only when it’s completely empty
• Some design use mini transactions to handle SMO

• File space management:
• What if a page is deleted but a concurrent reader reaches the deleted page?

• Recovery: what if crashes and we have to roll back a half completed B-tree update?

• Lock-free
• Using CAS and additional indirection  (J. Levandoski, D. Lomet, S. Sengupta. ICDE ‘13) 
• Other considerations?

CSE462/562 (Spring 2024): Lecture 5 45

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/


B-Tree in practice: key compression
• We want high fan-out → low tree height → faster query/update

• But string keys are often quite long (tens of bytes vs 4 bytes/8 bytes)

• Prefix key compression: extract the common prefix and only store the unique suffix
• Sorted keys tend to have a short common prefix

• Suffice truncation: store only the prefix that is enough for differentiating the subtree range
• Works for both string/multi-field keys

CompressionCompute Compile ressionute ileComp

David Smith 
Dannon 
Yogurt

Devarakonda 
Murthy

DevDavDan

(2,3)(1,5) (2,4) (2,4)(2,NULL)(1, NULL)

CSE462/562 (Spring 2024): Lecture 5 46



Summary
• This lecture

• ISAM

• B-Tree index

• How to search and scan/insert/delete in B-Tree

• Analysis of B-Tree index/file

• B-Tree in practice

• Next lecture
• More on indexing & cost analysis

• Reminders
• HW2 due this Sunday (3/3, 23:59 PM EST)

• Come to office hours (or schedule ad-hoc ones) for project 2 questions

• Project 3 will start next Monday 3/4 ---- start very early!

CSE462/562 (Spring 2024): Lecture 5 47


	Slide 1: CSE462/562: Database Systems (Spring 24)
	Slide 2: Range Searches
	Slide 3: Tree-based Indexes
	Slide 4: Index Entries
	Slide 5: ISAM
	Slide 6: ISAM Details
	Slide 7: Example ISAM
	Slide 8: ISAM Insertion Examples
	Slide 9: ISAM Deletion Examples
	Slide 10: B-Tree: the most widely used index
	Slide 11: B-Tree example
	Slide 12: B-Tree search
	Slide 13: B-Tree insertion
	Slide 14: B-Tree insertion example -- inserting 15*
	Slide 15: B-Tree insertion example -- inserting 8*
	Slide 16: B-Tree insertion example -- inserting 8*
	Slide 17: B-Tree insertion example -- Inserting 8*
	Slide 18: B-Tree deletion
	Slide 19: B-Tree deletion example -- deleting 19*
	Slide 20: B-Tree deletion example -- deleting 20* with merging
	Slide 21: B-Tree deletion example -- deleting 20* with merging
	Slide 22: B-Tree deletion example -- deleting 20* with merging
	Slide 23: B-Tree deletion example -- deleting 20* with merging
	Slide 24: B-Tree deletion example -- deleting 20* with merging
	Slide 25: B-Tree deletion example -- deleting 20* with rebalancing
	Slide 26: B-Tree deletion example -- deleting 20* with rebalancing
	Slide 27: B-Tree example of non-leaf rebalancing
	Slide 28: B-Tree example of non-leaf rebalacing (cont’d)
	Slide 29: Bulk loading of a B-Tree
	Slide 30: Bulk loading of a B-Tree
	Slide 31: Analysis of B-Tree storage cost
	Slide 32: Analysis of B-Tree storage cost
	Slide 33: Data access cost using B-Tree
	Slide 34: Cost of range scan with clustered B-Tree index
	Slide 35: Cost of range scan with unclustered B-Tree index
	Slide 36: Cost of range scan with clustered B-Tree file
	Slide 37: Trade-offs with B-Tree
	Slide 38: B-Tree in practice: page and record layout
	Slide 39: B-Tree in practice: page and record layout
	Slide 40: B-Tree in practice: structural modification
	Slide 41: B-Tree in practice: multi-field keys
	Slide 42: B-tree in practice: NULL values
	Slide 43: B-Tree in practice: non-unique keys
	Slide 44: B-Tree in practice: unique constraints
	Slide 45: B-Tree in practice: handling concurrency
	Slide 46: B-Tree in practice: key compression
	Slide 47: Summary

