CSE462/562: Database Systems (Spring 24)
Lecture 7: Relational Model and SQL

3/11/2024

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Data abstraction

* A revisit of the personal spending DB

e What if we want to

* record the payment method
* track budgets/bills
* link entries to itemized receipts

* Or what if
e the program/spreadsheet is slow after a while

Date
2/1
2/2
2/3

2/27

Amount
$20.21
$10.54
$39.22

$33.00

Description
Grocery

Fast food

Cell phone bill

Clothes

e you are managing the spending DB for many people (e.g., a company)

* Constant changes in data management
* for efficiency or for new application usages

e impractical to break existing applications for every change

CSE462/562 (Spring 2024): Lecture 7

Data abstraction

e Data abstraction
* View level: what and how to present data to different applications/users

Logical Data Independence: ability to change logical schema
without changing the external views and upper-level applications

* Logical level: what data are stored

Physical Data Independence: ability to change physical data
storage without changing the logical schema

* Physical level: how data are stored

CSE462/562 (Spring 2024): Lecture 7

Data models

* Data models are conceptual tools for

» describing and defining the data abstractions
* linking user’s view to the bits stored in DBMS

* Many data models exist
e Relational model (aka structured data model)

Entlt.y-ReIatlonshlp Model We’ll focus on relational model and Relational DataBase
Semi-structured data model Management Systems (RDBMS) in this course:

Graph data model

It’s the foundation of many other data models (including
semi-structured data model, graph data model and etc.).

* The survey below gives a historical view of why relational models are successful

e Joseph M. Hellerstein and Michael Stonebraker. What Goes Around Comes Around. Readings in Database
Systems, 4th Edition (2005).

* Keep it simple and stupid!
CSE462/562 (Spring 2024): Lecture 7

Relational model

* Example: student records database

student enrollment

mmmm sid__|semester _|cno __lgrade ___

Alice alicer34 2021 100 522 562 2.0

101 Bob bob5 CE 2020 102 s22 562 2.3

102 Charlie charlie7 CS 2021 100 f21 560 3.7

103 David davel CcS 2020 101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

CSE462/562 (Spring 2024): Lecture 7

Relational model

* Relational database: a collection of named relations (aka tables)

e Relation: a set of records (aka tuples) — no duplicates
* |n reality: multi-set semantics are more prevalent — allow duplicates

* Record: a sequence of values
* represents relationships among values

* TWO concepts
e Database Schema: names of the relations + names and types of the columns + constraints
* e.g., student(sid: integer, name: string, login: string, major: string, adm_year: date)
e each named column is also called an attribute or a field
e Database instance: a snapshot of the data at a time point
* e.g., the specific data in our student record database example

Relational model

Database schema
student(sid: integer, name: string, login: string, major: string, adm_year: date)

. / Relation (schema)
enrollment(sid: integer, semester: string, cno: integer, grade: float)

Relation (instance)

student enrollment
EECTECTSN AT T
Alice alicer34 2021

101 Bob bob5 CE 2020 102 522 562 2.3

102 Charlie charlie7 CS 2021 100 f21 560 3.7

103 David davel CS 2020 101 s21 560 3.3

102 f21 560 4.0

Record 103 s22 460 2.7

Column 101 f21 560 3.3

Database instance 103 f21 250 4.0

CSE462/562 (Spring 2024): Lecture 7

Integrity constraints

* Key constraints
e Superkey: a set of columns that uniquely identify a record
« e.g., {sid} is a superkey of student relation; {sid, name} is too;
* e.g., {sid, semester, cno} is a superkey of enrollment relation; but {sid, cno} is not
e Has nothing to do with specific instances
* {sid, cno}is not a superkey even if no one’s ever taken a course twice
* but it will be if the university policy prohibits retaking the same course

* Candidate key: a superkey K s.t.AK' < K:K' is a superkey
* e.g., {sid} and {login} are both candidate keys of student; {sid, login} is not

* (Primary) key: a chosen candidate key by the database designer
e e.g., student(sid: integer, name: string, login: string, major: string, adm_year: date)

Integrity constraints

* Foreign-key constraints
 from attributes A of referencing relation R to primary key A’ of referenced relation R':
* such that for any DB instance, any value of A must appear in A’ of some tuple in R’

R’ = student R = enrollment
mmmm sid | semester |cno | grade
Alice alicer34 2021 100 s22 562 2.0
101 Bob bob5 CE 2020 102 522 562 2.3
102 Charlie charlie7 CS 2021 100 f21 560 3.7
103 David davel CS 2020 101 s21 560 3.3

102 f21 560 4.0
103 s22 460 2.7
101 f21 560 3.3
103 f21 250 4.0

CSE462/562 (Spring 2024): Lecture 7

Integrity constraints

* Referential constraints
 from attributes A of referencing relation R to attributes A’ of referenced relation R’
* such that for any DB instance, any value of A must appear in A’ of some tuple in R’
* Foreign-key constraints as a special case where A’ is the primary key of R’

e Other general constraints

* These are less supported by DBMS due to efficiency reasons

CSE462/562 (Spring 2024): Lecture 7

10

Query Language

* Formal query languages
* Relational algebra
* Functional — describes how to query
e Relational calculus
* Declarative — describes what to query
* No side effects! Does not include data definition, update, integrity checks, and etc.
* Theoretical foundation of modern RDBMS; allows for query optimization

e Query language in practice: SQL (Structured Query Language)
* Has its root in relational algebra and relational calculus
* Includes many more beyond queries: imperative sublanguage, data definition, etc.

Relational algebra

* There are 6 basic operators:
* Selection o
* Projection

Renaming p

Cartesian product X

Set difference —

Union U

* The operators takes relations as input, and outputs a relation
* Schemas of the input/output schema are fixed
* Operators can be composed

CSE462/562 (Spring 2024): Lecture 7

Selection

¢ O'pR
* Selects the records in relation R that satisfy a predicate P
e Output relation has the same schema as its input

student
mmmm
Alice alicer34 2021
101 Bob bob5 CE 2020
102 Charlie charlie7 CS 2021
103 David davel CS 2020

O major='cs'Student

CSE462/562 (Spring 2024): Lecture 7

Projection

¢ 72412
e Retains only the attributes A in the output (i.e., “filters” on columns)
* Schema of the result is exactly A

* Projection in relational algebra must eliminate duplicates

* |In practice, no for using multi-set relational algebra, unless requested by the user.

student

mmmm

101
102
103

Alice
Bob
Charlie
David

alicer34
bob5
charlie7

davel

CE
CS
CS

2021 Tmajor,adm_yearStudent m

2021 CE 2020

2020 CS 2020

CSE462/562 (Spring 2024): Lecture 7

14

Renaming operator

* Pa,—al 4,54,
* Renames the attributes 4, 4,, ... to A7,

e Output schema is same as R except that the attributes are renamed

student

mmmm mmmm

101
102
103

Alice
Bob
Charlie
David

alicer34
bob5
charlie7

davel

CE
CS
CS

2021 Alice
2020 101 Bob
2021 102 Charlie
2020 103 David

/

plogineubitname,z _,fullnamestudent

CSE462/562 (Spring 2024): Lecture 7

alicer34
bob5
charlie7

davel

CE
CS
CS

2021
2020
2021
2020

15

Cartesian product

*R{ XR,
* Concatenates every pair of tuples t; € R{,t, € R, into asingle tuplet € Ry X R,
* Output schema is the concatenation of the two input schemas

* There might be naming conflicts, use renaming operator to av0|d that
student enrollment

mmmm mmm
100 Alice alicer34 2021
101 Bob bob5 CE 2020 102 s22 562 2.3
102 Charlie charlie7 CS 2021 100 f21 560 3.7
‘ student X enrollment
mmmmmmm
Alice alicer34 2021

100 Alice alicer34 CS 2021 102 s22 562 2.3

100 Alice alicer34 CS 2021 100 f21 560 3.7

101 Bob bob5 CE 2020 100 s22 562 2.0

More results follows

Union

/ Same number of columns. The it" columns in both
*RUR relations have the same type for all i.

* Union of two relations of the(compatible schema
e Output schema remains the same as inputs

student new_students
it oo osn il oW vomesn ot _Lsin e
100 Alice alicer34 2021 100 Alice alicer34 2021
101 Bob bob5 CE 2020 102 Charlie charlie7 CS 2021
104 Carol carol20 CS 2021
students U new_students ‘
mmmm
Alice alicer34 2021
101 Bob bob5 CE 2020
102 Charlie charlie7 CS 2021
104 Carol carol20 CS 2021

CSE462/562 (Spring 2024): Lecture 7 17

Set difference
e R — R’

» Set difference of two relations of the compatible schema
e Output schema remains the same as inputs

student new_students
il oin Lo e Wid el oL v
100 Alice alicer34 2021 100 Alice alicer34 2021
101 Bob bob5 CE 2020 102 Charlie charlie7 CS 2021
104 Carol carol20 CS 2021

students — new_students ‘
MME_M

bob5 2020

CSE462/562 (Spring 2024): Lecture 7 18

Assignment notation

* To help compose more complex queries with shared subqueries

« A « (Q: A denotes the output of relational algebra expression Q
* E.g,
studentinCS < 0,4 0r='cs'Student
students2021 < 04qm year=20215tudent
studentinCS U students2021

CSE462/562 (Spring 2024): Lecture 7

19

Compound operators

 Several useful compound operators
* Join X
* [nner join
* Natural join
* Quter join
* Set intersection N
* Division operator /

* All of them can be composed from the 6 basic operators
* Does not add expressiveness of the relational algebra

CSE462/562 (Spring 2024): Lecture 7

20

Inner join

*R Xp R' = UP(R X R")
* Selecting records that satisfy the predicate P from R X R’
* Most common special case is natural join
I /
R ™R = T[A(R)UA(R’)O-VaEA(R)nA(R'):R.a=R'.a(R X R')
* A(R) : attributes of R
* The predicate P is implicitly equality between common attributes of R and R’

* Projecting to all unique attributes of R and R’ (only one copy for common attributes)
* Equi-join: P is conjunction of equality predicates
e Useful for denormalization

Natural join

student S enrollment E
MWE_M sid |semester |cno |grade
Alice alicer34 2021 100 s22 562 2.0
101 Bob bob5 CE 2020 102 s22 562 2.3
102 Charlie charlie7 CS 2021 100 f21 560 3.7

103 David davel CS 2020 ‘ 101 s21 560 3.3

SXE= 7TS.sid,S.name,S.login,S.major,S.admyear,E.semester,E.cno,E.gradeO-S.sid=E.sidS X E

mmmmmm

Alice alicer34 2021
100 Alice alicer34 CS 2021 f21 560 3.7
101 Bob bob5 CE 2020 s21 560 3.3
102 Charlie charlie7 CS 2020 s22 562 3.7

CSE462/562 (Spring 2024): Lecture 7

22

Inner join

enrollment E

sid | semester [cno__lgrade [N sid |cno grade sid [cno |grade
100 s22 562 2.0 100 562 2.0 102 562 2.3

102 s22 562 2.3 100 560 3.7 102 560 4.0
100 f21 560 3.7 101 560 3.3 100 560 3.7
101 s21 560 3.3 101 560 3.3 102 560 4.0
102 f21 560 4.0 100 560 3.7 102 560 4.0
103 s22 460 2.7
101 f21 560 3.3
103 f21 250 4.0

. 7

El» EZ < 7Tsid,cno,gradeE

El X Ei.cno=E,.cnoAE;.grade<E,.grade EZ

CSE462/562 (Spring 2024): Lecture 7

Outer join

* Inner join results U tuples without matches (augmented with NULLSs)
* Types of outer joins ARDI NULLs
* Left outerjoin R><pR' =R xp R' U ((R — Tar)R Xp R’) X {({qb, o, ...,qb})

* Right outer joinR><<{pR’' = R Xp R' U ({(qb, b, ... P)} X (R’ ~ Ty(r)R Mp R,))
k)

Y
|A(R)| NULLs

e Full outer join
R>pR'=RX><pR'"URMIpR’

e Useful for preserving all unique values in one or both relations

Outer join

mmmm

student S
Alice alicer34
101 Bob bob5
102 Charlie charlie7
103 David davel

CE
CS
CS

S S.sid:E.sidE

enrollment E

sid | semester |cno __lgrade
100 s22 562 2.0

2021
2020 102 s22 562 2.3
2021 100 f21 560 3.7
2020

‘ 101 s21 560 3.3

mmmmmmm

Alice alicer34
100 Alice alicer34
101 Bob bob5
102 Charlie charlie7
103 David davel

CS
CE
CS
CS

2021

2021 100 f21 560 3.7
2020 101 s21 560 3.3
2020 102 522 562 2.3
2020 NULL NULL NULL NULL

CSE462/562 (Spring 2024): Lecture 7

25

Other useful operators

* Setintersection: RNR'=R—-—(R—R')

student new_students
it oo osn il oW vome e st _Lsin e
100 Alice alicer34 2021 100 Alice alicer34 2021
101 Bob bob5 CE 2020 102 Charlie charlie7 CS 2021
104 Carol carol20 CS 2021

students N new_students ‘
MME_M

Alic alicer34 2021

CSE462/562 (Spring 2024): Lecture 7 26

Other useful operators

* Division: R/R’
* Attributes of R’ must be a subset of the attributes of R
* The output schema of division is the extra attributes A, = A(R) — A(R') of R

* R/R' contains all tuples t, € T4 R such that
for every t’ € R, the concatenationt, ot’ € R

e Useful for expressing “for all” queries like
* Find all students who have enrolled in both CSE560 and CSE562

Division

Find all students who have enrolled in both CSE560 and CSE562

E C
ENEN E El
100 562 562 100
102 562 560 102
100 560
101 560 —
102 560
103 460 E/C
101 560

103 250

CSE462/562 (Spring 2024): Lecture 7

Division

* Exercise: how to express R/R’ using the basic operators
* Idea: find all t, € my4 R such that some combination ¢, o t" is missing from R

*R/R' =my R =1y, ((ms,R X R') = R)

CSE462/562 (Spring 2024): Lecture 7

29

Structured Query Language (SQL)

e SQL stands for Structured Query Language
* It’s not only a “query language”
* Consists of
» Data Definition Language (DDL): define/modify schema, delete relations
* Integrity checks: foreign-key constraints, general constraints, triggers
* View definition, authorization specification, ...
* Data Manipulation Language (DML): query/insert/update/delete in a DB instance
* Transaction control
» Stored procedure, embedded SQL, SQL Procedural language, ...

* The most widely used relational query language. Latest standard is SQL-2016
e Each DBMS (e.g. MySQL/PostgreSQL) has some “unique” aspects
* We'll only review the basics of SQL.

CSE462/562 (Spring 2024): Lecture 7 30

DDL - Create Table

* CREATE TABLE table name ({

J

column name data type

[y])

e Data Types include:

CHAR (n) - fixed-length character string

VARCHAR (n) -—variable-length character string with max length n
SMALLINT, INTEGER, BIGINT -signed 2/4/8-byte integers
NUMERIC[(p[,s])] —exact numeric of selectable precision
REAL, DOUBLE - single/double floating point numbers

DATE, TIME, TIMESTAMP,

SERIAL - unique ID for indexing and cross reference

CSE462/562 (Spring 2024): Lecture 7

31

DDL - Create Table w/ Column Constraints

* CREATE TABLE table name ({
column name data type
[column constraint [, ...]]

boLsel)

e Column Constraints:
[CONSTRAINT constraint name] {
DEFAULT default expr |
NOT NULL | NULL | UNIQUFE | PRIMARY KEY |
CHECK (boolean expression) |
REFERENCES reftable [(refcolumn)] [ON DELETE action]
[ON UPDATE action] }

where action is one of:
NO ACTION, CASCADE, SET NULL, SET DEFAULT

can only reference the column’s value

CSE462/562 (Spring 2024): Lecture 7

32

DDL - Create Table w/ Table Constraints

* CREATE TABLE table name (|
column name data type
[column constraint [, ...]] |
table constraint

boLyl)

*Table constraints:

[CONSTRAINT constraint name] {
UNIQUE (column name [, ...]) |
PRIMARY KEY (column name [, ...]) |

CHECK d(boolean expression) | can only reference multiple table column’s values
FOREIGN KEY (columm name [, ...])
REFERENCES reftable [(refcolumn [, ...])]

[ON DELETE action] [ON UPDATE action]}
where action is one of:

NO ACTION, CASCADE, SET NULL, SET DEFAULT

CSE462/562 (Spring 2024): Lecture 7

33

DDL -Create Table (Examples)

* CREATE TABLE student (

sid INTEGER PRIMARY KEY,

name VARCHAR (100) NOT NULL,

login VARCHAR (32) UNIQUE NOT NULL,
major VARCHAR (3),

adm year DATE);

* CREATE TABLE enrollment (

sid INTEGER REFERENCES student ON
SET NULL

semester VARCHAR(3),

cno INTEGER,

grade NUMERIC (2, 1)

PRIMARY KEY (sid, semester, cno)):;

CSE462/562 (Spring 2024): Lecture 7

DELETE

34

Other DDL statements

* DROP TABLE table name;

* ALTER TABLE table name action [,..];

where actionis one of

ADD column name data type [column constraints
DROP column name data type

ALTER coumn name ..

ADD table constraint

DROP CONSTRAINT constraint name

CSE462/562 (Spring 2024): Lecture 7

[, .

]]

35

SQL DML

e SELECT statement
 INSERT statement
* DELETE statement
* UPDATE statement

CSE462/562 (Spring 2024): Lecture 7

36

SQL DML Semantics

* SQL uses multi-set relational algebra by default
* Multi-set semantics (i.e., allow duplicate rows), let Q, Q' be multi-set RA queries
* For projection m4Q, no deduplication over the attribute set A
* For selection g, 0, all copies of rows in) that satisfies predicate P are retained

* For cross product Q X Q', there are cc’ copies of t o t' if there are ¢ copies of t in
Q and ¢’ copies of t’' in Q'

* Deduplications are explicit via distinct keyword
e Set union, set difference and set intersection, see later discussion

e SQL also supports operators that can’t be expressed in the standard multi-set
relational algebra

* sorting
* aggregation

Single-Table Query

 Single-table queries are straight-forward.

e To find all students admitted in 2021, we can write
SELECT *

FROM students S
WHERE S.adm_year = 2021;

student

mmmm
Alice alicer34 2021 mmmm

result

101 Bob bobs CE 2020 ‘ 100 Alice alicer34 2021
102 Charlie charlie7 cS 2021 102 Charlie charlie7 CS 2021
103 David davel CS 2020

CSE462/562 (Spring 2024): Lecture 7 38

Multi-Table Query

* We can express a join as follows

SELECT S.name,

FROM student S,

E.grade
enrollment E

SELECT S.name,

E.grade

WHERE S.sid=E.sid AND E.cno=562;

student

or

FROM student S JOIN enrollment E
ON S.sid = E.sid
WHERE E.cno = 502;

EETT cr o
logn L —
grade
Alice alicer34 2021 “ m
100 s22 562 2.0
101 Bob bob5 CE 2020
102 s22 562 2.3
102 Charlie charlie7 CS 2021
100 f21 560 3.7
103 David davel CS 2020
101 s21 560 3.3
102 f21 560 4.0
Result
103 s22 460 2.7
m
101 f21 560 3.3
Alice
, 103 f21 250 4.0
Charlie 2.3

CSE462/562 (Spring 2024): Lecture 7

39

SQL Query Syntax

e SELECT and FROM clauses are mandatory

: , SELECT [DISTINCT] target-1ist
e WHERE clause is optional

FROM relation—-11ist
[WHERE predicate]

e relation-11ist: alist of relation
e each possibly with a table alias (aka correlation name)

. Itarget—list: a list of expressions that may reference columns in the relation
ist
e “*” to denote all the columns in the relation list
* each may be renamed with AS clause (e.g., S.name as student name)
e DISTINCT: an optional keyword to deduplicate the result

* predicate: boolean expressions over the columns in the relation list, may
contain

e comparisons suchas <.>. <=.>= =.<> |IKF

« AND/OR/NOT SQL supports string matching operator LIKE:

* nested query "_’ stands for any one character and "%’ stands for 0 or more arbitrary characters.

R e.g., dname LIKE ‘%Engineering’ will match all departments that ends with
“Engineering” in its name

CSE462/562 (Spring 2024): Lecture 7

40

SQL Query Semantics

* A SQL query may be translated into the following multi-set relational algebra

Let R{, R5, ..., R,, be relations in the relation list
and £, E,, ..., E,,, be the expressions in the target list
and P be the boolean predicate in the WHERE clause (P = true if WHERE clause is missing)

Mg, E,,. En,0pR1 X Ry X == X Ry

* If there’s DISTINCT keyword in the select clause
* The final projection uses set semantics (in practice, implemented as a deduplication operator)

* This is a conceptual and probably the least efficient way of computing a SQL query
* Query optimizer will find more efficient strategies that produce the same result

CSE462/562 (Spring 2024): Lecture 7 41

A running example enrollment E

SELECT S.name, E.grade sid__|semester |cho _grade
100 522 562 2.0

FROM student S, enrollment E
WHERE S.sid=E.sid AND E.cno=562;

102 s22 562 2.3

student S 100 21 560 3.7
mmmm 101 521 S60 33
Alice alicer34 2021 102 f21 560 4.0

101 Bob bob5 CE 2020 103 522 460 2.7
102 Charlie charlie7 CS 2021 101 f21 560 3.3

103 David davel CS 2020 ' 103 f21 250 4.0
SXE

mmmmmmm

100 Alice alicer34 2021
100 Alice alicer34 CS 2021 102 s22 562 2.3
100 Alice alicer34 CS 2021 100 f21 560 3.7
100 Alice alicer34 CS 2021 100 s22 562 3.3

More results follows

A running example (cont’d)

SELECT S.name, E.grade
FROM student S, enrollment E
WHERE S.sid=E.sid AND E.cno=562;

WMMMMMM

Alice alicer34 2021
100 Alice alicer34 CS 2021 102 s22 562 2.3
100 Alice alicer34 CS 2021 100 f21 560 3.7
100 Alice alicer34 CS 2021 100 s22 562 3.3

More results follows

‘ 0s.sid=E.sid and E.cno=562° X E

WMMWMMM

100 Alice alicer34 2021
102 Charlie charlie?7 CS 2021 102 s22 562 2.3

CSE462/562 (Spring 2024): Lecture 7

43

A running example (cont’d)

SELECT S.name, E.grade
FROM student S, enrollment E
WHERE S.sid=E.sid AND E.cno=562;

WMMMMMM

100 Alice alicer34 2021
102 Charlie charlie7 CS 2021 102 s22 562 2.3

‘ T[S.name,E.gradeUS.sid=E.sid and E.cn0=56ZS X E

name | grade

Final result = Alice 2.0

Charlie 2.3

CSE462/562 (Spring 2024): Lecture 7

44

ORDER BY Clause

. Op(’;ional ORDER BY clause sorts the final results before presenting them to the
end user

* expr is some expression of the columng SELECT [DISTINCT] target-1ist
in the relation list FROM relation-list

* Sort lexicographically [WHERE predicate]

* May also use positional notation (1, 2, 3,|...)
* denotes expr in target list [ORDER BY] expr [ASC|DESC] [,..]

* Default is ascending order ASC
e Specify DESC for descending order

* Examples
* ORDER BY E.grade DESC --sort by descending orderin grade
e ORDER BY 2 DESC -- same as above

* ORDER BY E.grade DESC, S.name

. soat by descending grade first; then for equal values of grade, sort by name in ascending
order

e ORDER BY 2 DESC, 1 ASC --same as above

CSE462/562 (Spring 2024): Lecture 7

Nested Query

* Nested queries may appear in FROM clause and/or WHERE clause

* Nested query in FROM clause: conceptually evaluates and creates a temporary table

—-— find the names of all the students who’ve taken CSE562
SELECT S.name
FROM students S,
(SELECT sid FROM enrollment WHERE cno = 562) E
WHERE S.sid = E.sid;

* Nested query in WHERE clause (actually also HAVING clause, see later)
SELECT name
FROM students
WHERE sid in (SELECT sid FROM enrollment WHERE cno =
502) ;

* To find those who have not taken CSE562, use NOT IN operator

CSE462/562 (Spring 2024): Lecture 7 46

Nested Query (cont’d)

* Nested queries may also reference outer query relations

e Set operators in nested query
e EXISTS/NOT EXISTS: whether the result of the subquery is non-empty/empty

SELECT name
FROM student S
WHERE EXISTS (SELECT * FROM enrollment E WHERE S.sid = E.sid AND cno = 562);

e Set comparison op SOME/ALL: compares a value against a set (op is an operator such as <,
<=, =, ...
e a > SOME (subgquery): aislarger than some value in the result set of the

subquery
* a > ALL (subquery): aislargerthan all the values in the result set of the
subquery
-— find the sid of all the students with the highest grade in CSE562
SELECT sid

FROM enrollment
WHERE cno = 562
AND grade >= ALL (SELECT grade FROM enrollment
WHERE cno = 562 AND grade is not NULL) ;

CSE462/562 (Spring 2024): Lecture 7 47

Aggregation

* Aggregation operator is an extension to relational algebra

* YF(expr),...Q Where F is an aggregation function SELECT F([distinct] expr)
« Common aggregation function include: FROM relation-1list
* COUNT(*) — number of result rows [WHERE ~ predicate]

 COUNT(expr) — number of non-null rows
 MIN, MAX, SUM, AVG, VARIANCE, STDDEV
 Adding DISTINCT before the argument in the aggregation function
* Deduplicate the expr values before aggregation
e COUNT(DISTINCT *) is not valid!

* Examples
. SELECT MAX (grade) FROM enrollment WHERE cno = 562 -- find the highest grade in CSE562
e SELECT name from student where cno = 562
AND grade = (SELECT MAX (grade) from enrollment where cno = 562)

* find the names of the students who have the highest grade in CSE562

CSE462/562 (Spring 2024): Lecture 7

48

Aggregation with Grouping

* Can also have optional GROUP BY and HAVING clauses
- croup BY: group the rows by distinct values of the expressions

e expr can be any output column SELECT targ?t—llét
or any expression over input columns FROM relation-list

. . [WHERE predicate]
e target-list can have none/part/all of grouping exprs [GROUD BY exprl, expr2
and any number of aggregation functions ' A

. . _ | [HAVING having-predicate]]
e aggregation functions are applied on a per-group basis
- mavInG: a selection operator over the groups

* can use any grouping expr or any aggregation function (not necessary in the
target list)

In extended relational algebra:

Mtarget—list Ohaving—predicate (exprl,exprz,...Vp(expr{),,_,Q)
where Q is the relational algebra for SELECT * FROM relation-list WHERE predicate;

CSE462/562 (Spring 2024): Lecture 7 49

Aggregation with Grouping (cont’d)

* Example 1: find the enrollment size of each 500-level or above courses

 SELECT semester, cno, COUNT (*) AS size FROM enrollment
GROUP by semester, cno HAVING cno >= 500;

enrollment

sid__|semester |cho __grade result
100 S22 562 2.0
100 522 s62 2.3 semester _|cno__|size
s22 562 2

100 f21 560 3.7
TN P R = e) o s s

102 f21 560 4.0 s21 560 1
103 s22 460 2.7
101 f21 560 3.3
103 f21 250 4.0

Ocno=500 (semester,cno YCOUNT(%) as size enrollment)

CSE462/562 (Spring 2024): Lecture 7

Aggregation with Grouping (cont’d)

* Example 2: find the enrollment size of all course with average GPA >=3.0

 SELECT semester, cno, COUNT (*) AS size FROM enrollment
GROUP by semester, cno HAVING AVG(grade) >= 3.0;

enrollment

sid | semester |cno _|grade result
100 S22 562 2.0
100 522 s62 23 semester _|cno__|size
f21 560 3

100 f21 560 3.7
o T) o s

102 f21 560 4.0 f21 250 1
103 522 460 2.7
101 f21 560 3.3
103 f21 250 4.0

TMsemester,cno,size9avggpa=3.0 (semester,cno YCOUNT (%) as size,AVG(grade) as avggpaenroument)

CSE462/562 (Spring 2024): Lecture 7

Null values

* Field values in a tuple are sometimes unknown (e.g., a rating has not been
assigned) or inapplicable (e.g., no spouse’s name).
* SQL provides a special value null for such situations.
* The presence of null complicates many issues. E.g.:

* Special operators needed to check if value IS/IS NOT NULL.
* Is rating>8 true or false when rating is equal to null? What about AxD, ORrR and

NOT? Truth table for SQL AND
 We need a 3-valued logic (true, false and unknown). %??
* Meaning of constructs must be defined carefully. TRUE FALSE FALSE
(e.g., WHERE clause eliminates rows that don’t evaluate to true.) rse muse rase
* New operators (in particular, outer joins) possible/needed. TRUE NULL NULL
. . . FALSE NULL FALSE
 NULLs are usually ignored in aggregate functions NULL NULL UL

e Exercise: truth tables for OR and NOT operators?

CSE462/562 (Spring 2024): Lecture 7 52

Null values

* Seemingly “equivalent” queries may actually produce different results due to NULL

values
e e.g., find the sid of all the students with the highest grade in CSE562

SELECT sid
FROM enrollment
WHERE cno = 562

AND grade = (SELECT MAX (grade) FROM enrollment WHERE cno = 562);
SELECT sid Returns empty set if there’s at least one NULL
FROM enrollment grade value in CSE562.

WHERE cno = 562 How to correct it?

AND grade >= ALL (SELECT grade FROM enrollment
WHERE cno = 562);

CSE462/562 (Spring 2024): Lecture 7

53

Outer Join

* Explicit join semantics needed unless it is an INNER join

SELECT
FROM

(column list)

table name

[INNER | {LEFT
ON qualification 1ist
WHERE ..

|RIGHT | FULL } OUTER]

JOIN table name

CSE462/562 (Spring 2024): Lecture 7

54

Set operations in SQL

* INTERSECT: N
* UNION: U
* EXCEPT: —

queryl UNION [ALL]
queryl EXCEPT [ALL]

queryl INTERSECT [ALL] queryZ

query?’
queryZz

» Uses set semantics (i.e., deduplicate after the set operation)
* unless ALL keyword is specified (i.e., no deduplication)

CSE462/562 (Spring 2024): Lecture 7

55

Other DML Statements

INSERT [INTO] table name [(column list)] VALUES (value list);
INSERT [INTO] table name [(column list)] <select statement>;

DELETE [FROM] table name [WHERE qualification];
UPDATE SET column name = expr [,..] [WHERE qualification];

CSE462/562 (Spring 2024): Lecture 7

Summary

* Relational model, relational algebra & SQL

* Next lecture: query processing overview

* Reminders
* No office hours during the Spring Recess (3/18/2024 - 3/23/2024)
* Post questions on Piazza + mid-term review + Q&A on 3/25
 HW3 due this Sunday (3/17/2024, 23:59 PM EDT)
* Project 3 due next Sunday (3/24/2024, 23:59 PM EDT)
* Midterm exam on 3/27/2024, Knox 104, 7:05 pm - 8:25 pm
* Open-book, paper materials only, no electronics except a calculator

CSE462/562 (Spring 2024): Lecture 7

57

	Slide 1: CSE462/562: Database Systems (Spring 24)
	Slide 2: Data abstraction
	Slide 3: Data abstraction
	Slide 4: Data models
	Slide 5: Relational model
	Slide 6: Relational model
	Slide 7: Relational model
	Slide 8: Integrity constraints
	Slide 9: Integrity constraints
	Slide 10: Integrity constraints
	Slide 11: Query Language
	Slide 12: Relational algebra
	Slide 13: Selection
	Slide 14: Projection
	Slide 15: Renaming operator
	Slide 16: Cartesian product
	Slide 17: Union
	Slide 18: Set difference
	Slide 19: Assignment notation
	Slide 20: Compound operators
	Slide 21: Inner join
	Slide 22: Natural join
	Slide 23: Inner join
	Slide 24: Outer join
	Slide 25: Outer join
	Slide 26: Other useful operators
	Slide 27: Other useful operators
	Slide 28: Division
	Slide 29: Division
	Slide 30: Structured Query Language (SQL)
	Slide 31: DDL - Create Table
	Slide 32: DDL - Create Table w/ Column Constraints
	Slide 33: DDL - Create Table w/ Table Constraints
	Slide 34: DDL -Create Table (Examples)
	Slide 35: Other DDL statements
	Slide 36: SQL DML
	Slide 37: SQL DML Semantics
	Slide 38: Single-Table Query
	Slide 39: Multi-Table Query
	Slide 40: SQL Query Syntax
	Slide 41: SQL Query Semantics
	Slide 42: A running example
	Slide 43: A running example (cont’d)
	Slide 44: A running example (cont’d)
	Slide 45: ORDER BY Clause
	Slide 46: Nested Query
	Slide 47: Nested Query (cont’d)
	Slide 48: Aggregation
	Slide 49: Aggregation with Grouping
	Slide 50: Aggregation with Grouping (cont’d)
	Slide 51: Aggregation with Grouping (cont’d)
	Slide 52: Null values
	Slide 53: Null values
	Slide 54: Outer Join
	Slide 55: Set operations in SQL
	Slide 56: Other DML Statements
	Slide 57: Summary

