CSE462/562: Database Systems (Spring 24)
Lecture 8: Query Processing Overview
3/25/2024

University at Buffalo

s Department of Computer Science
and Engineering
School of Engineering and Applied Sciences

Last updated: 3/19/2024

Midterm review & Q&A

* Reminders
e Midterm exam on 3/27/2024, Knox 104, 7:05 pm - 8:25 pm
* Open-book, paper materials only, no electronics except a calculator
* Please arrive at least 5 minutes early
* Bring your ID

e Covers everything up to Lecture 6
* Excluding relational model, relational algebra & SQL

* The lecture on 4/8 will be remote due to the solar eclipse
* Live streaming from Knox 104

* Please join through Panopto

* https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-3813-4596-8f26-
b0f20148c17a

CSE462/562 (Spring 2023): Lecture 14

https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-b0f20148c17a
https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-b0f20148c17a

Big picture

User applications

DBMS

SQL Parser/API

Query Processing & Optimization

File Organization/Access Methods

Buffer Management

Disk space/File management

Operating System

Hardware devices

CPU

s —

CSE462/562 (Spring 2023): Lecture 14

— 5
Secondary
Storages

What’s discussed so far student

* The lower-level storage layer in DBMS ﬂmmm

* Disk/file space management 100 Alice alicer34 2021
 File organization 102 Charlie charlie7 CS 2021
* Access methods 103 David davel CS 2020
* Indexing Find the names and the grades of all the students
enrolled in the course 562 who were admitted in the
year of 20217
 How to answer queries/perform updates? 100 522 562 4.0
* Relational algebra vs SQL 102 s22 562 2.3
e Correctness? 100 f21 560 3.7
* Efficiently? 101 s21 560 3.3
102 f21 560 4.0
* Query processing & optimization 103 s22 460 2.7
101 f21 560 3.3
103 f21 250 4.0

CSE462/562 (Spring 2023): Lecture 14

Simple select query and relational algebra

e Recall that the basic form of SELECT query can be translated into extended relational algebra
* The conceptual way of answering the query
* With some non-relational operators (notably Sort).

non-relational
-- SQL SELECT with no aggregation
SELECT [DISTINCT] E{, E5, ..,Enpn
FROM R{,R,, ..., R,
[WHERE P]
[ORDER BY expr [ASC|DESC] [,..]]

Sort (Distinct(mg, s,.5,0pRy X Ry X -+ X Ry))

-- SQL with aggregation

SELECT E'\,E'5, ..., E';y, FL(E]), ..., Fx (EY)
FROM Ry, R, .., R,

[WHERE P]

[GROUP BY Ey, Ep, ... E sort (”E’l,E’z,...,E’m,Fl(E{’),...,Fk(E,Q’)UP’ (E1,Ez,---,EzVF1(E{’),...FR(E,Q’)Q))
[HAVING P']]
[

ORDER BY expr [ASC|DESC] [,..]]

Q <« opRy XR, XX R,

CSE462/562 (Spring 2023): Lecture 14 5

Query processing overview

 DBMS translates SQL to a special internal language
* Query plans

* logical: extended relational algebra with some non-relational operators @
.]] . s.name,E.grade
* physical: describes the actual implementation of the operators 5

* Think of query plans as data-flow graphs sadm year=202175cno=s2>

* Edges: flow of records
* Vertices: relational and non-relational operators
* Input/Output of the operators: relations

N sid=E.sid

* Three stages of query processing

* Parsing & query rewriting: SQL -> logical plan An example of logical plan
* Query optimization:
logical plan -> optimized logical plan -> physical plan

* Query execution: evaluating the physical plan over the database

CSE462/562 (Spring 2023): Lecture 14

Query processing overview

* include multiple intermediate steps (e.qg., parsing
tree/analysis/rewriting)

oDBc/iDBC/ | SQL Query
command
line frontend

SELECT S.name,E.grade sal
FROM student S, enrollment E Parser* | (Extended) Relational Algebra
WHERE S.sid = E.sid

s name,E.grade US.adm_year=202 1AE.cno= 5625 Ns sid=E.sid E
AND S.adm year = 2021

AND E.cno = 562; Internally represented as @
Physical plan Logical plan ©
s name,E.grade
Query f
Query Optimizer
Query result Execution ndex Nested < | @":2021"@
Loop Join yy
S.name | E.grade
Alice | 4.0
. X¢ cid=F sid
Charlie| 2.3 S.sid=E.si
(2 rows)

Index Scan Scan
student S enrollment E enrollment

CSE462/562 (Spring 2023): Lecture 14 7

** This picture by oksmith is licensed under CCO

https://openclipart.org/detail/312062/female-computer-user-16c
https://openclipart.org/artist/oksmith
https://creativecommons.org/publicdomain/zero/1.0/

Parsing and query rewriting

* SQL Parser are usually generated from a context-free grammar using compiler tools
* e.g., antlr (LL grammar), lex+yacc/flex+bison (LR grammar/LALR(1) grammar)
* We'll omit the details which are covered in compiler courses
* Produces a parse tree for a SQL query

* Analysis and transformation into logical plan

* A parse tree represents the syntactical structure of a SQL query -- not suitable for query processing
* Needs to be translated into a logical plan

» Catalog information helps resolving tables/columns/types/expressions/functions
* Query rewriting

User defined/system defined rules for transforming queries (e.g., non-materialized views, customized rewriting rules)

Query rewriting m

Parsing Parse tree stmt_or_cmd Logical plan @
| Analysis & ¥
|:> select_stmt -~ y i
SQL Query ransjormation @ear:ZOZlAE@

SELECT S.name, E.grade SELECT target_list from_clause where_clause 4
FROM student S, enrollment E /\ /\ M
WHERE S.sid = E.sid

AND S.adm year = 2021 expr , target_list FROM from_list WHERE expr

AND E.cno = 562; /N AN /N

CSE462/562 (Spring 2023): Lecture 14

Scan
enrollment E

Query optimization (a preview)

* Many equivalent plans exist for the same query
 Efficiency varies

* Query optimization
* Finding the-best a not-too-bad plan with reasonable overhead

* Generally divided into two phases
Logical Plan Optimized Logical Plan Physical Plan

@ i @ Physical
“ ot “ mizat
optimization Sname,E.grade

optimization
@mzozm@ ndex Nested

* Loop Join

student S nrollment student S enrollment E

CSE462/562 (Spring 2023): Lecture 14 9

N sid=E.sid

OFE.cno=562

Query execution

* Query executor needs to evaluate the result of a physical plan over a database instance

* Query interpretation vs compilation

* To date, most DBMS uses a single piece of binary code that “interprets” the query plans
e Uses run-time information to determine which function(s) to call
* Easy to implement with runtime polymorphism (e.g., C++/Java/Scala)

 Some modern DBMS compiles query plans into binary code for efficiency (e.g., [1])
e Avoids virtual function call overhead in tight loops
* More efficient for queries over large database
e Overhead for compilation (LLVM to the rescue) and a bit harder to implement

* Can take hybrid approach:
* e.g., only compiling expression trees into binary code, while interpreting the physical plan

[1] Efficiently Compiling Efficient Query Plans for Modern Hardware. Thomas Neumann, 2011.
CSE462/562 (Spring 2023): Lecture 14

10

Query execution (cont’d)

* Pull-based vs guery execution
Pull-based query execution
e Start from root and pull data from children
* Tuple passed via recursive function calls. ;
« Virtual function call/function dispatch overhead ~*

T[s.name,E.grade

A

pull
A
t

pull @ X5 sid=E.sig
Scan
pull enrollment

tq)

CSE462/562 (Spring 2023): Lecture 14

11

Query execution (cont’d)

* Pull-based vs guery execution

Push-based query execution
* Start from leaf and push data to parent

* Allows more efficient use of cache/registers in pipel%nes

* when used with query compilation

4
7Ts.name,E.grade

A

US.adm_year=202 1/\@
A
t

N sid=FE.sid

Scan
enrollment

CSE462/562 (Spring 2023): Lecture 14

12

Query execution (cont’d)

* Pull-based vs guery execution
* Pipelining vs materialization

rr’ rr’ rr’
t1 ,ty 0t

7Ts.name,E.grade

A
I’ r r
t; , 6, t

l1 L l
05.adm_year=202 1/\@
A

y
r 144 r
tl,tz,...,tk

N sid=FE.sid

Scan
enrollment

tl; tz, "';tn t:,[; té) "';tm,

CSE462/562 (Spring 2023): Lecture 14

13

Query execution models

» Several models for implementing the operators
* Volcano model (aka iterator model)
e most traditional and widely used one
* pull-based execution
* Materialization model
* Vectorization model

* Running example
SELECT * FROM student
WHERE major=‘CS’ ORDER BY adm year;

Internal sort by
adm_year

1

A

Heap Scan
student S

CSE462/562 (Spring 2023): Lecture 14

14

Volcano model

e Operators implemented as subclasses of some iterator interface similar to below
struct iterator {
vold init () ;
Record next () ;
void close();
vold rewind () ;

Tterator *inputs|[];
* Encapsulation }s

* Edges are encoded as inputs (aka child iterators)
* Each operator implementation maintains its own internal state in its subclass
* Generally, any operator can be input to any other operators

* Evaluation strategy: pull-based execution
* Call next () repeatedly on the root
* [terators recursively call next () on the inputs
* Can be pipelining or materializing, depending on the operators

* Note: the iterator tree sometimes is a separate homomorphic tree to the physical plan
» Allows caching of physical plan (read-only)

* A new iterator tree for storing mutable execution state per query
CSE462/562 (Spring 2023): Lecture 14

15

Example: heap scan

struct heap scan iterator: public iterator ({

heap scan iterator(relation R) { //leaflevel, noinputin heap scan

table = create a Table object over R;
}
void init () {
iter = create and initialize an iterator over t;
}
Record next () {
1f (iter.next()) {

return the record in iter;

}
return an invalid record;
}
volid close () {
close the iterator and the table;
}
void rewind () {
close and recreate a iterator in iter;
}
// internal state of a heap scan
Table *table;
Table::Iterator iter; _
CSE462/562 (Spring 2023): Lecture 14

b

// initializing internal states

16

Example: selection o (streaming)

struct selection iterator: public iterator
selection iterator (iterator *c, BooleanExpression *e): ({
set input[0] = c; //selection hasone input node
set pred = e;
}
void init () {
input [0]->init (); //iterator implementation must recursively initialize the inputs
}
Record next () {
while (r = input[0]->next()) { //call nexton the inputiterator to get the next record for selection
if (pred evaluates to true on record r) { return r; } //onlyreturn when pred istrue

}

return an invalid record;
}
void close () {
input[0]->close () ;
}
void rewind () {
input [0]->rewind () ;
}
// internal state of a selection. note that no record is ever stored in the iterator
BooleanExpression *pred; CSE462/562 (Spring 2023): Lecture 14

1.

Example: internal sort (blocking)

struct internal sort iterator: public iterator {//ctor omitted

void init () {
input [0]->init (); //iteratorimplementation must recursively initialize the inputs

}

Record next () {
if (!'valid) {
while (r = input[0]->next()) records.push back(r);

sort r; set i to 0; set valid to true;
} // will not return until all the records from the input are fetched
if (i < records.size()) return records[i++];
return an invalid record;
}
void close () {
input[0]->close();
}

volid rewind () {
set 1 to 0; // think: why not call input [0]->rewind()?
}
// internal state of an internal sort. note that all the records from the input iterator are stored here.
Expressions *columns;
int n;
bool wvalid;
size t 1i;
vector<Record> records;
bi CSE462/562 (Spring 2023): Lecture 14

Example: putting it together
init ()@
admxyear
init () @

A

il] RN S P

Alice alicer34 2021

@ 101 Bob bob5 CE 2020
student S 102 Charlie charlie7 cs 2021

103 David davel CS 2020

CSE462/562 (Spring 2023): Lecture 14 19

Example: putting it together
o) ST

Internal sort by T
adm_year . records=
A \\\\
next ()

A

e | s oo s

100 Alice alicer34 2021
@ 101 Bob bob5 CE 2020

student S 102 Charlie charlie7 CS 2021
103 David davel CS 2020

CSE462/562 (Spring 2023): Lecture 14 20

Example: putting it together

next ()
@ B8 sicd | name | login | major | adm_year
100 Alice alicer34 CS 2021
Internal sort by T
adm_year \\j:ecords=
next ()

A

nexe) | s oo s e

100 Alice alicer34 2021

Heap Scan 101 Bob bob5 CE 2020
student S . .

102 Charlie charlie7 CS 2021
103 David davel CS 2020

CSE462/562 (Spring 2023): Lecture 14 21

Example: putting it together

next ()
@ B8 sicd | name | login | major | adm_year
100 Alice alicer34 CS 2021
Internal sort by T
adm_year \\j:ecords=
next ()

A

nexe) | s oo s e

100 Alice alicer34 2021

Heap Scan 101 Bob bob5 CE 2020
student S . .

102 Charlie charlie7 CS 2021
103 David davel CS 2020

CSE462/562 (Spring 2023): Lecture 14 22

Example: putting it together

next ()@

Internal sort by T
adm_year . records=

A

next () @

A
next (@
Heap Scan
student S

o sic__| name | login | major | adm_year

100 Alice alicer34
102 Charlie charlie7
103 David davel

CSE462/562 (Spring 2023): Lecture 14

CS
CS
CS

2021
2021
2020

mmm_m

100
101
102
103

Alice
Bob
Charlie
David

alicer34 2021
bob5 CE 2020
charlie7 CS 2021
davel CS 2020

23

Example: putting it together

next ()@

Internal sort by T
adm_year . records=

A

A

Heap Scan
student S

B8 sid | name | login | major | adm_year

103 David davel
102 Charlie charlie7

100 Alice alicer34

CSE462/562 (Spring 2023): Lecture 14

CS
CS
CS

2020
2021
2021

mmm_m

100
101
102
103

Alice
Bob
Charlie
David

alicer34 2021
bob5 CE 2020
charlie7 CS 2021
davel CS 2020

24

Materialization model

* Fully materializes results in each operator

* Emits all results as a whole
e Can send tuples in row or column formats

e Can push down hints to avoid scanning too many records

* Good for queries that touches a few
records at a time

e OLTP workload

* Not good for those with large intermediate
results

output = child.output ()
sort (output)
return out

out = []

for t in child.output () :

1if t.major = ‘CS'’:
out.append (t)
return out

out = []

for t in S:
out.append (t)

return out;

CSE462/562 (Spring 2023): Lecture 14

Internal sort by
\\\\\\‘Efknryear
A
" Heap Scan
student S

25

Vectorization model

* Emits a small batch of results at a time
 Still needs to loop over a next () function
* Fewer function calls & can often leverage SIMD
* Bounded memory usage unlike materialization model

* Good for OLAP workload out = []
while ¢ out = child.Next():

out.extend(c out)

sort (out) Int | b
. nternal sor
 Batch size may depend on hardware or return out w vear Y
workload properties T

out = []
while c out = child.Next () : /4
. out.extend (OﬁuUO;;E;::>
 DBMS often takes a hybrid approach filter (c_out, “major = ‘CS’”)) \

if Jout| >= k:
return out <:::Tfiﬁffﬁﬁ:::>
student S
out = []
continue scan t in S:
out.append (t)

if |out| >= k:
return out

CSE462/562 (Spring 2023): Lecture 14

Summary

* This lecture
e Overview of query processing
* Query execution models

* Next two lectures
* Single-table query processing

 Reminders

e Midterm exam on 3/27/2024, Knox 104, 7:05 pm - 8:25 pm
* Open-book, paper materials only, no electronics except a calculator
* Please arrive at least 5 minutes early
* Bring your ID

* The lecture on 4/8 will be remote due to the solar eclipse
* Live streaming from Knox 104
* Please join through Panopto
* https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-

b0f20148c17a

CSE462/562 (Spring 2023): Lecture 14

27

https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-b0f20148c17a
https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-b0f20148c17a

	Slide 1: CSE462/562: Database Systems (Spring 24)
	Slide 2: Midterm review & Q&A
	Slide 3: Big picture
	Slide 4: What’s discussed so far
	Slide 5: Simple select query and relational algebra
	Slide 6: Query processing overview
	Slide 7: Query processing overview
	Slide 8: Parsing and query rewriting
	Slide 9: Query optimization (a preview)
	Slide 10: Query execution
	Slide 11: Query execution (cont’d)
	Slide 12: Query execution (cont’d)
	Slide 13: Query execution (cont’d)
	Slide 14: Query execution models
	Slide 15: Volcano model
	Slide 16: Example: heap scan
	Slide 17: Example: selection bold italic sigma (streaming)
	Slide 18: Example: internal sort (blocking)
	Slide 19: Example: putting it together
	Slide 20: Example: putting it together
	Slide 21: Example: putting it together
	Slide 22: Example: putting it together
	Slide 23: Example: putting it together
	Slide 24: Example: putting it together
	Slide 25: Materialization model
	Slide 26: Vectorization model
	Slide 27: Summary

