
CSE462/562: Database Systems (Spring 24)

Lecture 9: Single-table query processing
(Part 1)

4/1/2024

Last updated: 3/19/2024

Reminders
• The next lecture on 4/8 will be remote due to the solar eclipse

• Live streaming from Knox 104

• Please join through Panopto

• https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-
b0f20148c17a

• Project 3 is due today, 23:59 PM EDT

• Project 4 to be released tomorrow, due on 4/15/2024, 23:59 PM EDT

CSE462/562 (Spring 2024): Lecture 9 2

https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-b0f20148c17a
https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-b0f20148c17a

Single-table queries
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?

• How to implement each operator?

• How to measure the cost of each operator?

CSE462/562 (Spring 2024): Lecture 9 3

SELECT 𝐺, 𝑆𝑈𝑀 𝐸
FROM 𝑅
WHERE 𝑃
GROUP BY 𝐺
HAVING 𝑃′

ORDER BY S

SELECT 𝐸
FROM 𝑅
WHERE 𝑃

ORDER BY S

SQL -> logical plan
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?

• How to implement each operator?

• How to measure the cost of each operator?

CSE462/562 (Spring 2024): Lecture 9 4

SELECT 𝐺, 𝑆𝑈𝑀 𝐸
FROM 𝑅
WHERE 𝑃
GROUP BY 𝐺
HAVING 𝑃′

ORDER BY S

SELECT 𝐸
FROM 𝑅
WHERE 𝑃

ORDER BY S

𝑆𝑜𝑟𝑡𝑆 𝜋𝐸𝜎𝑃𝑅

𝑆𝑜𝑟𝑡𝑆 𝜎𝑃′ 𝐺𝛾𝑆𝑈𝑀 𝐸 𝜎𝑃𝑅

Logical plan -> physical plan
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?
• How to implement each operator?
• How to measure the cost of each operator?

• A few basic operators
• Selection: 𝜎
• Projection: 𝜋 (w/ and w/o deduplication)
• Aggregation: 𝛾 w/o or w/ group by
• Set operators: ∪, −,∩
• Sorting (later lectures)
• Cartesian product: × or Join: ⋈ (later lectures)

• Question: what are the alternatives? How to evaluate their efficiency?

CSE462/562 (Spring 2024): Lecture 9 5

Measuring cost
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?
• How to implement each operator?
• How to measure the cost of each operator?

• For disk-based systems, we mainly measure the number of I/Os
• Differences between random I/O and sequential I/O
• Faster storage -> also need to measure the CPU cost

• A simple cost model
• 𝑡𝑇: average time to transfer a page of data (data transfer time)
• 𝑡𝑆: average time to randomly seek data (seek time + rotation delay)

• For SSD, time overhead for initiating an I/O request

• Cost = 𝐵 × 𝑡𝑇 + 𝑆 × 𝑡𝑆

• 𝐵: number of pages read/written; 𝑆: number of random I/O

CSE462/562 (Spring 2024): Lecture 9 6

HDD* SSD†

𝑡𝑇 (ms) 0.1 0.01

𝑡𝑆 (ms) 4 0.09

Typical 𝑡𝑇 and 𝑇𝑆

Data from DB Concept book (Ch. 15.2).
Assuming 4KB pages.
* typical HDD with 40 MB/s transfer rate,
15000 rpm disk in 2018
† typical SATA SSD that supports 10K IOPS (QD-
1), 400 MB/s sequential read rate

Measuring cost
• Other assumptions

• Ignoring the buffer effect for random pages
• Do consider the private workspace size 𝑀 for the operators

• Omitting the cost of transferring output to the user/disk
• Common to any equivalent plan

• Notations: for relation 𝑅
• 𝑇𝑅: number of records, 𝑁𝑅: number of pages in its heap file, 𝐵𝑅: (average) number of tuples per page
• ℎ𝐼: height of a B-tree index 𝐼 over the file
• 𝑀: private workspace size in pages

• Running example
• 𝑡𝑆 = 4 𝑚𝑠, 𝑡𝑇 = 0.1 𝑚𝑠, 4000-byte page
• Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

• 50 bytes/tuple, 𝐵𝑅 = 80, 𝑇𝑅 = 40,000, 𝑁𝑅 = 500
• Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

• 20 bytes/tuple, 𝐵𝐸 = 200, 𝑇𝐸 = 200,000, 𝑁𝐸 = 1000

CSE462/562 (Spring 2024): Lecture 9 7

Selection 𝝈
• Scan is usually the leaf-level of logical plans

• Represents reading an entire relation -- not really a relational operator

• Selection 𝜎𝑃𝑄
• 𝑃 is usually conjunctions or disjunctions 𝑄. 𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒

but can also be User-Defined Functions (UDF)

• selects records satisfying some predicate from the child

• Child may be a scan or some other operators

• Many possible implementation of selection depending on

• the predicate 𝑃

• the available file/index for the scan

CSE462/562 (Spring 2024): Lecture 9 8

Scan R

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

Logical plan for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅

op is an operator: <, <=, =, <>, >, >=, …

Simple selection: linear scan
• Consider a simple selection 𝜎𝑅.𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒𝑅

• Assume that the child is a relation stored in some disk file/index

• Most straight-forward implementation is linear scan
• Scan each page and each record on the page

• emits a record only if the predicate 𝑅. 𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 evaluates to true

• Applies to any predicate 𝑃 or file

• Also works for pipelining -- can do selection on the fly without writing temporary files

• Cost: 𝑡𝑆 + 𝑁𝑅 × 𝑡𝑇

• 1 seek to the start of the file and 𝑁𝑅 pages to read

• the “last resort” -- usually the slowest implementation

• cost for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021 𝑅: 𝑡𝑆 + 500 × 𝑡𝑇 = 54 𝑚𝑠

CSE462/562 (Spring 2024): Lecture 9 9

Scan R

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

Logical plan for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅

Simple selection: binary search on sorted file
• If the file on 𝑅 is sorted on the search key

• use binary search to locate the first record, then scan the remaining tuples

• Cost: log2 𝑁𝑅 × 𝑡𝑆 + 𝑡𝑇 + 𝑁 − 1 × 𝑡𝑇

• 𝑁: the number of pages with matching records, which can be approximated as

• N = 𝑠𝑁𝑅

• 𝑠: selectivity, i.e., the percentage of records that satisfy the predicate (discussed later in QO)

• Running example: suppose 𝑅 is sorted on 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 and selectivity is 𝑠 = 10%

• cost = log2 500 × 𝑡𝑆 + 𝑡𝑇 + 0.1 × 500 − 1 ∗ 𝑡𝑇 = 41.8 𝑚𝑠

CSE462/562 (Spring 2024): Lecture 9 10

Scan R

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

Logical plan for 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅

binary search cost, all random I/Os scanning cost, -1 accounts for the first page read during binary search

Simple selection: index scan
• If the file has a B-Tree index 𝐼 over the search key, assuming alternative 2 for data entries

• cost varies depending on whether it’s clustered

• Assuming selectivity is 𝑠 = 0.1, the number of matching records is 𝑇 and the number of
pages with matching records is 𝑁, assume ℎ = 3
cost =
• ℎ𝐼 × 𝑡𝑇 + 𝑡𝑆 for finding qualifying data entries +

• cost for retrieving the heap records

• clustered: tS + 𝑁 × 𝑡𝑇 ≈ 𝑡𝑆 + 𝑠𝑁𝑅 × 𝑡𝑇 (total = 12.3 + 9 = 21.3 𝑚𝑠)

• unclustered:
𝑇

𝐹
− 1 × 𝑡𝑇 + 𝑇 × 𝑡𝑇 + 𝑡𝑆

 =
𝑠𝑇𝑅

𝐹
− 1 × 𝑡𝑇 + 𝑠𝑇𝑅 × 𝑡𝑇 + 𝑡𝑆 (total = 12.3 + 16401.3 = 16413.3 𝑚𝑠)

• can we do better?

CSE462/562 (Spring 2024): Lecture 9 11

𝑇: # of matching records
𝐹: # of data entries per leaf page
N: # of pages with matching records

Simple selection: index scan (cont’d)
• Refinement for unclustered index scan: bitmap index scan

1. Initialize a bitmap with one bit for each page in the file (usually fits in mem even for a large file)

2. Find the first qualifying data entry

3. Scan all the data entries and mark all the unique pages with the matching records in the bitmap

4. Scan all the pages with bit 1 (linear scan on page)

• Alternative: collect all RID in memory in step 3, sort and fetch tuples in RID order
• more expensive unless RIDs fit in memory

• might make sense for faster storage (thus CPU cost matters)

CSE462/562 (Spring 2024): Lecture 9 12

Data entries

Heap file

0 0 0 1 1 1 0Bitmap

Simple selection: index scan (cont’d)
• Cost of bitmap index scan =

• (tree search) ℎ × 𝑡𝑆 + 𝑡𝑇 +

• (scan of data entries)
𝑇

𝐹
− 1 × 𝑡𝑇 + (assuming leaf level is consecutive from bulk loading)

• (scan of data pages) 𝑁 × 𝑡𝑆 + 𝑡𝑇 (when N is small and thus most involve random seeks) or
 𝑡𝑆 + 𝑁 × 𝑡𝑇 (when N is close to 𝑁𝑅 and it’s close to sequential scan)

• Example 1 (large selectivity): 𝑠 = 0.9, F = 300, T = sTR = 36000, N = 500 =>
 cost = 4.1 × 3 + 0.1 × ⌈

36000

300
⌉ − 1 + 4 + 0.1 × 500 = 78.2 𝑚𝑠 (unclustered)

 vs 4.1 × 3 + 4 + 0.1 × ⌈0.9 × 500⌉ = 61.3 𝑚𝑠 (clustered)

• Example 2 (moderate selectivity): 𝑠 = 0.1, 𝐹 = 300, 𝑇 = 𝑠𝑇𝑅 = 4000, E N ≈ 500 (think: why?)
 cost = 4.1 × 3 + 0.1 × ⌈

4000

300
⌉ − 1 + 4 + 0.1 × 500 = 67.6 𝑚𝑠 (unclustered)

 vs 4.1 × 3 + 4 + 0.1 × 0.1 × 500 = 21.3 𝑚𝑠 (clustered)

• Example 3 (small selectivity): 𝑠 = 0.0001, 𝐹 = 300, 𝑇 = 𝑠𝑇𝑅 = 4, 𝑁 = 4
 cost = 4.1 × 3 + 0.1 × ⌈

4

300
⌉ − 1 + 4.1 × 4 = 28.7 𝑚𝑠 (unclustered)

 vs 4.1 × 3 + 4 + 0.1 × 0.0001 × 500 = 16.4 𝑚𝑠 (clustered)

• Trade-offs:
• Only slightly more expensive than a linear scan when selectivity is close to 1

• Only slightly more expensive than a regular secondary index scan when selectivity is close to 0 (<< linear scan)

• Only works poorly when the selectivity is moderate -- better off with clustered index

• To show that, let 𝐼𝑖 = 1 if page i has any matching record (an indicator variable) and assume uniform distribution in search key

• 𝐸 𝑁 = σ1≤𝑖≤𝑁𝑅
𝐸 𝐼𝑖 = σ1≤𝑖≤𝑁𝑅

Pr 𝐼𝑖 = 1 = 𝑁𝑅 1 − 1 − 𝑠 𝐵𝑅

CSE462/562 (Spring 2024): Lecture 9 13

𝑇: # of matching records
𝐹: # of data entries per leaf page
N: # of pages with matching records

General selection predicates
• Atom predicate: 𝑎𝑡𝑡𝑟 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 or UDF

• General predicates:
• Conjunction ∧ (and), disjunction ∨ (or), negation ¬ (not) of atoms or general predicates

• e.g., 𝜎 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟>=2019 ∨ 𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′ ∧ 𝑠𝑖𝑑 >= 1000𝑅

• Most general cases can always be handled by linear scans
• Slow!

• Optimization for special cases:
• Conjunction of simple selection predicates 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• where 𝜃𝑖 is an atom

• Disjunction of selection predicates 𝜃1 ∨ 𝜃2 ∨ ⋯ ∨ 𝜃𝑟

• Transforming a predicate 𝑃 into Conjunctive Normal Form (CNF) or Disjunction Normal Form (DNF) for
additional optimization opportunities

• e.g., 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 >= 2019 ∨ 𝑚𝑎𝑗𝑜𝑟 =′ 𝐶𝑆′ ∧ 𝑠𝑖𝑑 >= 1000 (CNF)
⇔ 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 >= 2019 ∧ 𝑠𝑖𝑑 ≥ 1000 ∨ 𝑚𝑎𝑗𝑜𝑟 =′ 𝐶𝑆′ ∧ 𝑠𝑖𝑑 ≥ 1000 (DNF)

CSE462/562 (Spring 2024): Lecture 9 14

Conjunctive selection with one index
• 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• Choosing one or a prefix of predicates that can be answered using one index

• Apply the rest of the predicates over the result on the fly

• For instance, a B-Tree over 𝑓1, 𝑓2 can select for predicates over a prefix of its index keys

• 𝑓1 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 (where 𝑜𝑝 ∈ <, ≤, =, >, ≥)

• 𝑓1 = 𝑣𝑎𝑙𝑢𝑒 ∧ 𝑓2 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 (where 𝑜𝑝 ∈ <, ≤, =, >, ≥)

• If allow using skip scan (jump scan), 𝑓2 op value or 𝑓1 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒 ∧ 𝑓2 𝑜𝑝 𝑣𝑎𝑙𝑢𝑒

• What if there’re multiple choices?

• Considerations: selectivity, type of indexes, actual cost (access path selection in QO)

• Cost is the same as index scans/bitmap index scans

CSE462/562 (Spring 2024): Lecture 9 15

Conjunctive selection with multiple indexes
• 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• What if the atoms or several conjunctions of atoms can be answered by different indexes?

• Example: 𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′ ∧ 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅 when we have two indexes 𝐼1 𝑚𝑎𝑗𝑜𝑟 and 𝐼2 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟

• Algorithm:
1. Collect all the RIDs using both indexes

2. Compute the intersection of the RIDs

3. Fetch the heap records of the RIDs in the result set

• Cost: index search + collecting data entries+ sort + intersection + fetching heap records

CSE462/562 (Spring 2024): Lecture 9 16

Partial matches for conjunctive selection
• 𝜃1 ∧ 𝜃2 ∧ ⋯ ∧ 𝜃𝑟

• What if only part of the predicates can be optimized with indexes

• Apply the remaining predicates over the result and discard those that do not satisfy

• e.g.,𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′ ∧ 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021 with a hash index 𝐼 𝑚𝑎𝑗𝑜𝑟

• Index Scan for all CS majors using 𝐼 𝑚𝑎𝑗𝑜𝑟

• Apply the predicate 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 = 2021 over the heap records on the fly

• Note the remaining predicates do not need to be in conjunctive normal form!

• Can be arbitrary predicates (e.g., UDF)

CSE462/562 (Spring 2024): Lecture 9 17

Disjunction selection with multiple indexes
• 𝜃1 ∨ 𝜃2 ∨ ⋯ ∨ 𝜃𝑟

• Only optimizable if all clauses 𝜃𝑖 can be optimized using some index

• Otherwise, fall back to linear scan

• Algorithm:
1. Collect all the RIDs using both indexes

2. Compute the union of the RIDs

3. Fetch the heap records of the RIDs in the result set

• Cost: index search + collecting data entries+ sort + union + fetching heap records

CSE462/562 (Spring 2024): Lecture 9 18

An excursion: expression evaluation
• So far, we assume expression evaluation is a black box

• Does the predicate evaluate to true in selection?

• Projection list evaluation?

• …

• How does it work?
• How costly are they?

CSE462/562 (Spring 2024): Lecture 9 19

Expression tree
• A tree that represents an expression

• Leaf nodes: literals, variables
• Internal nodes: operators (+, -, *, /, …), function calls, …

• Expressions in QP are attached to a plan node
• Variables refers to columns in the output of some plan node

• usually output from child, but could be intermediate outputs within certain operators

• Example: predicate 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 >= 2019 ∨ 𝑚𝑎𝑗𝑜𝑟 = ′𝐶𝑆′

CSE462/562 (Spring 2024): Lecture 9 20

>=

𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 2019

∨

=

𝑚𝑎𝑗𝑜𝑟 ′𝐶𝑆′

Q: what are the variables in query plan?
A: (short answer) columns in the output

𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

some input

100, Alice, CS, 2020

Expression evaluation
• Interpretation vs Compilation

• type checking?

• In the course project Taco-DB, we use interpretation (for ease of implementation)
• recursive evaluation through Eval() calls

CSE462/562 (Spring 2024): Lecture 9 21

>=

𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 2019

∨

=

𝑚𝑎𝑗𝑜𝑟 ′𝐶𝑆′

100, Alice, CS, 2020

Eval(rec)

rec =

=

= return result

2020 2019

(2020 >= 2019) == true

true ∨ any boolean value == true

true

Projection 𝝅
• Without deduplication

• evaluate projection list for the records on the fly
• cost: no additional I/O
• sometimes baked into other operators (i.e., all operators can be followed by an implicit projection)

• With deduplication
• Requires materialization (blocking)
• Hash or Sort

• Hash -> build a hash table where duplicates are dropped
• Sort -> emit a record only if it is the first record or it is different from the previous one

• Result set fits in memory => easy to implement (does not add I/O cost)
• When result sets exceed configured workspace size 𝑀,

• Need to use external hashing and sorting algorithms (next lecture)
• Optimization opportunities
• Will come back to this later after we discuss external hashing and sorting

CSE462/562 (Spring 2024): Lecture 9 22

Projection over selection: Index only scan
• For 𝜋𝐸1,𝐸2,…,𝐸𝑘

𝜎𝑃𝑅
• Let Var 𝐸 be the set of attributes in the expression 𝐸

• e.g., 𝑉𝑎𝑟 𝑅. 𝑠𝑖𝑑 > 100 = 𝑅. 𝑠𝑖𝑑
𝑉𝑎𝑟 𝑙𝑒𝑛𝑔𝑡ℎ 𝑅. 𝑛𝑎𝑚𝑒 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑅. 𝑙𝑜𝑔𝑖𝑛 = 𝑅. 𝑛𝑎𝑚𝑒, 𝑅. 𝑙𝑜𝑔𝑖𝑛

• Suppose there’s an index 𝐼 over 𝑅 whose index key is 𝐾𝐼, such that

• 𝑖≤𝑘≥1ڂ 𝑉𝑎𝑟(𝐸𝑖) ∪ 𝑉𝑎𝑟 𝑃 ⊆ 𝐾𝐼

• we can perform an index scan without fetching the heap records (index-only scan)
• Note: attributes that only appear in the projection list can be non-key columns in index
• Might be useful even if search key does not match the index key

• Cheaper than heap scan due to high fan-out

• Cost = tree search cost + cost for scanning all matching data entries
 = ℎ × 𝑡𝑆 + 𝑡𝑇 +

𝑇

𝐹
− 1 × 𝑡𝑇 (assuming leaf level is consecutive on disk due to bulk loading)

• Example: 𝜋𝑎𝑑𝑚_𝑦𝑒𝑎𝑟,𝑠𝑖𝑑𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅, B-Tree index on 𝑅 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟, 𝑠𝑖𝑑
h = 3, 𝑠 = 0.1, 𝑇 = 𝑠𝑇𝑅 = 4000, 𝐹 = 300

• cost of index-only scan = 3 × 4.1 +
4000

300
− 1 × 0.1 = 13.6 𝑚𝑠

 vs cost of index scan (clustered) = 3 × 4.1 + 4 + 0.1 × 0.1 × 500 = 21.3 𝑚𝑠

CSE462/562 (Spring 2024): Lecture 9 23

Summary
• This lecture:

• Operators for single-table queries
• Scan, Selection, Projection

• Expression evaluation

• Next lecture:
• Aggregation, Sorting, External sorting

• Reminders:
• Project 3 is due today, 23:59 PM EDT
• Project 4 to be released tomorrow, due on 4/15/2024, 23:59 PM EDT

• The next lecture on 4/8 will be remote due to the solar eclipse
• Live streaming from Knox 104
• Please join through Panopto

• https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-
b0f20148c17a

CSE462/562 (Spring 2024): Lecture 9 24

https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-b0f20148c17a
https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5b61364-381a-4596-8f26-b0f20148c17a

	Slide 1: CSE462/562: Database Systems (Spring 24)
	Slide 2: Reminders
	Slide 3: Single-table queries
	Slide 4: SQL -> logical plan
	Slide 5: Logical plan -> physical plan
	Slide 6: Measuring cost
	Slide 7: Measuring cost
	Slide 8: Selection bold italic sigma
	Slide 9: Simple selection: linear scan
	Slide 10: Simple selection: binary search on sorted file
	Slide 11: Simple selection: index scan
	Slide 12: Simple selection: index scan (cont’d)
	Slide 13: Simple selection: index scan (cont’d)
	Slide 14: General selection predicates
	Slide 15: Conjunctive selection with one index
	Slide 16: Conjunctive selection with multiple indexes
	Slide 17: Partial matches for conjunctive selection
	Slide 18: Disjunction selection with multiple indexes
	Slide 19: An excursion: expression evaluation
	Slide 20: Expression tree
	Slide 21: Expression evaluation
	Slide 22: Projection bold italic pi
	Slide 23: Projection over selection: Index only scan
	Slide 24: Summary

