CSE462/562: Database Systems (Spring 24)

Lecture 10: Single-table query processing
(Part 2)

4/8/2024

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Reminders

* HW4 released today, due on 4/22/2024, 23:59 PM EDT
* Project 4 due next Monday, 4/15/2024, 23:59 PM EDT

CSE462/562 (Spring 2024): Lecture 10

Recap on Single-Table QP

A few basic operators
Selection: o
Projection: w (w/ and w/o deduplication)
Aggregation: y w/o or w/ group by
Set operators: U, —,N
Sorting
Cartesian product: X or Join: X

SELECT E

FROM R So'rts(ﬂEO'pR)
WHERE P

ORDER BY S

SELECT G,SUM(E)
FROM R

WHERE P
GROUP BY G S 0”5(0 p' ¢Ysum(g)OpR)

HAVING P’
ORDER BRY S

CSE462/562 (Spring 2024): Lecture 10

Measuring cost

« We'll start with the simplest single-table queries w/o or w/ aggregations

 How to measure the cost of each operator?

* For disk-based systems, we mainly measure the number of |/Os
 Differences between random I/O and sequential I/0

* Faster storage -> also need to measure the CPU cost Typical t; and T
. | oo | s
* Asimple cost model
* tr:average time to transfer a page of data (data transfer time) tr (ms) 24 Luth

* ts: average time to randomly seek data (seek time + rotation delay)

: . ts (ms) 4 0.09
* For SSD, time overhead for initiating an I/O request

e Cost=B Xtr+ S Xts
* B:number of pages read/written; S: number of random I/O

CSE462/562 (Spring 2024): Lecture 10

Measuring cost

e Other assumptions
* lIgnoring the buffer effect for random pages
* Do consider the private workspace size M for the operators
* Omitting the cost of transferring output to the user/disk
« Common to any equivalent plan

* Notations: for relation R
e Tr: number of records, Np: number of pages in its heap file, Bp: (average) number of tuples per page
* h;: height of a B-tree index I over the file
e M: private workspace size in pages

* Running example
* ts = 4 ms, tr = 0.1 ms, 4000-byte page
« Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)
* 50 bytes/tuple, B = 80, T = 40,000, N, = 500
* Enroliment: E(sid: int, semester: char(3), cno: int, grade: double)
* 20 bytes/tuple, By = 200, Tz = 200,000, N; = 1000

CSE462/562 (Spring 2024): Lecture 10

Aggregation y without grouping

. Q F is an aggregation function, e.g.,
Yy (E1),F2(E2),..F i (Ex) SUM,COUNT, VAR, STDDEV,AVG, MIN, MAX or UDA etc.
* Blocking
* Only produce one row of output

- An aggregation can be expressed as three functions: F = (F™it, pacc pfinal)
e Initialization F™: poid — A (where A is some internal state of the aggregation)
e Accumulation F*¢: (A,T) » Aor (A, T) - void
e Finalization F/"4l: A — V (where V is the final type of the aggregation)
 Some systems also have an optional combine function Feo™bine. (4 A) —» A

 allows parallelizing the aggregation

* Example: AVG of integers
o AVGY™ (): create a pair of (s, ¢) -- s: sum of values, c: number of values

. AVG“CC((S, c),x) =(s+x,c+1)

« AVGTMal((5,¢)) =10 *s/c
* Cost: does not add additional I/O cost

CSE462/562 (Spring 2024): Lecture 10

Aggregation y without grouping

o Example: AVG of integers F is an aggregation function, e.g.,

« AVG™ (): create a pair of (s, c) -- s: sum of vaIue.S,({M.’.(.‘TQE].A.”:’.V.’?R..’ETDDEV’AVG’ MIN, MAX or UDA etc.

. AVG“CC((S, C),x) =(s+x,c)
« AVGTMA((s,¢)) =1.0 *s /¢

* Consider a column in a table with the following values
* 54,1,3,2
* Steps:
« AVG™E () =(0.0,0)
« AVG%¢((0.0,0),5) = (5.0,1)
« AVG*¢((5.0,1),4) = (9.0,2)
« AVG€((9.0,2),1) = (10.0,3)
« AVG%°¢((10.0,3),3) = (13.0,4)
« AVG%°¢((13.0,4),2) = (15.0,5)

. final . _ 5+4+1+3+2
AVGTal((15.0,5)) = 3.0 -

CSE462/562 (Spring 2024): Lecture 10

Aggregation y with grouping

G1,G2,..sGpn Y F1(E1),Fy (EZ),...,Fk(Ek)Q
* Blocking
* One record per group (distinct values in G4, G, ..., G;,)
* Let group by columns be G = (G4, G, ..., Gy,)
e Solution: sorting or hashing

CSE462/562 (Spring 2024): Lecture 10

Aggregation y with grouping

G1,G2,..sGpn Y F1(E1),Fy (EZ),...,Fk(Ek)Q
* Blocking
* One record per group (distinct values in G4, G, ..., G;,)
* Let group by columns be G = (G4, G, ..., Gy,)
* Sort-based solution: sort all tuples in Q on G; for each result t
1. Iftisthefirstone, g « mst and a; « F{™(),...ax « FME()

2. Iftisnotthefirstand mgt # g, emit go (Fﬁnal(1)) - F,{inal(ak))
* Then, g « mgt and a; « F{™(), ... Ft()
3. Inbothcases, a; < acc(al, g, t), - acc(ak, g, t)
4. After the last record is read, emit the last group as g o (Flfmal(al), F,{mal(ak))

 If there are too many groups, use external sorting
e Optimization opportunities (next lecture)

CSE462/562 (Spring 2024): Lecture 10

Aggregation y with grouping

* Example for sort-based solution:
e Consider two columns (x, y) with the following values
* (1,1.0),(2,2.0),(1,4.0),(2,6.0)
* xVsum(y)
Step 1: sort by x
* (1,1.0),(1,4.0),(2,2.0),(2,6.0)
Step 2: scan and calculate the group aggregates
* Scan(1,1.0):g«<x=1,a;, «<0.0+1.0=1.0
* Scan(1,4.0):ay < a; +4.0=5
e Scan (2, 2.0):
e Sincex =2#g=1,emit(g,a,) = (1,5.0) as a result
e ge—x=2,a, < 00+2.0=2.0
* Scan (2,6.0):aq < a; + 6.0 =8.0
Step 3: emit the final group: (g,a,) = (2, 8.0)

CSE462/562 (Spring 2024): Lecture 10

Result
x| sumly) |
1 5.0
2 8.0

10

Aggregation y with grouping

G1,G2,..sGpn Y F1(E1),Fy (EZ),...,Fk(Ek)Q

* Blocking

* One record per group (distinct values in G4, G, ..., G;,)
* Let group by columns be G = (G4, Gy, ..., G,) or U;<;<,, Var(G;)

» Hash-based solution: create a hash table from G to (44,45, ..., Ay)
* Maintain the hash table using the aggregation functions while reading records from Q
» After deplete the records in Q, scan the hash table, and
* emit one row for each distinct value in G and compute its final value using the finalization functions

e Again, if there are too many groups, use external hashing
e Optimization opportunities (next lecture)

CSE462/562 (Spring 2024): Lecture 10 11

Aggregation y with grouping

* Example for hash-based solution:
e Consider two columns (x, y) with the following values

. (1,1.0),(2,2.0),(1,4.0), (2, 6.0) -
e assume h(1) =2,h(2) =0 y
* xVsum(y))

» Step 1: create an empty hash table

e Step 2: scan records and maintain aggregates
e scan(1,1.0):x[h(1)] «x=1,a,[h(1)] <« 0.0+ 7y =1.0
* scan(2,2.0):x[h(2)] « x =2,a4|h(2)] « 0.0 +y = 2.0

CSE462/562 (Spring 2024): Lecture 10

2.0

hash table
1

1.0

12

Aggregation y with grouping

* Example for hash-based solution:
e Consider two columns (x, y) with the following values
* (1,1.0),(2,2.0),(1,4.0),(2,6.0) h(x)
e assume h(1) =2,h(2) =0 y
* xVsuM(y) ay
Step 1: create an empty hash table
Step 2: scan records and maintain aggregates
e scan(1,1.0):x[h(1)] «x=1,a,[h(1)] <« 0.0+ 7y =1.0
* scan(2,2.0):x[h(2)] « x =2,a4|h(2)] « 0.0 +y = 2.0
e scan(1,4.0):a.[h(1)] « a;[h(1)]+y=1.0+4.0=75.0
e scan(2,6.0):a;[h(2)] « a;|h(2)]+y =2.0+ 6.0 =8.0
Step 3: scan hash table and emit results

CSE462/562 (Spring 2024): Lecture 10

8.0

hash table
1

5.0

Result

S Lsumin

13

Set operators U,N , —

* SQL performs deduplication before the set operators by default, unless one specifies ALL
e eg.,A={1,1,2},B={1, 2}
 SELECT * FROM A EXCEPT SELECT * FROM B; --resultisempty
e SELECT * FROM A EXCEPT ALL SELECT * FROM B; --resultis{1}(one row)
 UNION ALL can be made pipelining: emit everything from LHS and then RHS

* All the others are similar: using UNION as an example
 Solution: sorting or hashing
* sorting: sort A and B separately, merge them together by removing any duplicates
e Similar to a sort-merge join we will discuss in later lectures
* hashing: create a hash table over all the attributes, scan A and B
* Only keep the first occurrence of each distinct value
* Once again, optimization opportunities exist when the result set(s) of A and/or B do not fit in memory

CSE462/562 (Spring 2024): Lecture 10

14

Sort operator

* Use cases
 ORDER BY
* For Sort-Merge Join (next lecture)
* For bulk loading tree indexes

* |f data fit in memory -- easy
e quick sort
* merge sort

CSE462/562 (Spring 2024): Lecture 10

15

External sorting

* Problem: sort or hashing 1TB of data over 1GB of RAM
* Why not virtual memory?
* Swaps involve expensive random |/Os
* Why not using B-Tree/extendible hashing/linear hashing?
* Dynamic structures carry additional overhead for maintenance (not needed in QP)
e Missing optimization opportunities with hybrid approach (see later)

* General wisdom:
* |/O cost dominates the total cost
* Design algorithms to reduce the number of 1/Os

CSE462/562 (Spring 2024): Lecture 10

16

In-memory two-way merge-sort: a starting point

* Recall the two-way merge-sort
 given a list of items in A[0..n — 1]
* recursively divide and conquer the problem
. . . . n n
* divide the list into two halves A4 [0.. b“ , A5 HE‘ +1,n— 1]

* merge-sort A; and A, individually
* merge the two sorted list A1, 4,

5 2 1 2

5

merge-sort
9 divide e sublists > = merge 2
7 j‘> 73 j‘> 7 4 j‘> 3
. 1 4 10 8 4
2 5
8 7
3 8
4 10

CSE462/562 (Spring 2024): Lecture 10

External two-way merge sort

 Needs 3 buffers

* |Instead of recursion

e works bottom up from the input

Y

INPUT].~\\\\

OUTPUT

Y

Disk file

-(INPUT 2 /

Main memory buffers

CSE462/562 (Spring 2024): Lecture 10

Disk file

18

External two-way merge sort

 Needs 3 buffers

* |Instead of recursion

* works bottom-up from the input

Y

OUTPUT

INPUT 1 \
—>’ INPUT 2 7

Main memory buffers

Y

3,4 (6,2 (9,4| [8,7| |5,6] |3,1] [2,7] |6
3.4 |2,6| |49 |7.8 |5,6] [1,3] [2,7] |6
\ /. \ /. \ /. \ /.
N N N\ N
2.3 4,7 1,3 2,6
4.6 8,9 5,6 7
pd Z
_/ \
C:::::::::> 2.3 1,2
4.4 3,5
| | 6.7 6,6
| | 8.9 7
— 1,2
2,3
Disk file J
3,4
4,5
6,6
6,7
7,8
9

CSE462/562 (Spring 2024): Lecture 10

Input file
PASS 0

1-page runs
PASS 1

2-page runs

PASS 2

4-page runs

PASS 3

8-page runs

19

External two-way merge sort

Input: N pages

* Transfer cost: 2tyN([log, N| + 1)
« Seek cost: 2tsN(Jlog, N1 + 1)
 total =2(ty + tg)N([log, N| + 1)

Y

INPUT 1 \

OUTPUT

Cost for a pass: reading & writing N pages once Y
of passes: height of the tree = [log, N| + 1
Total cost: 2N ([log, N] + 1) 1/Os

Disk file

INPUT 2 /

Main memory buffers

3,4 (6,2 (9,4] 8,7 6] 13,1 [2,7] |6
3.4 |2,6| |49 |7.8 |5,6] [1,3] [2,7] |6
AN /. AN /. AN /. \ /.
N N 4 N
2.3 4,7 1,3 2,6
4,6 8,9 5,6 7
pd Z
_/ \
2,3 1,2
4.4 3,5
. . 6,7 6,6
Not so efficient! :
ffi 5.9 =
— 1,2
_’/
2,3
3,4
> | | 4,5
| | 6.6
S 6.7
7,8
Disk file 9

CSE462/562 (Spring 2024): Lecture 10

Input file
PASS 0

1-page runs
PASS 1

2-page runs

PASS 2

4-page runs

PASS 3

8-page runs

20

External multi-way merge sort

 How do we fully utilize all the M buffers?

e Solution: (M-1)-way merge-sort

* Pass O: internal sort to produce initial runs
* read every M pages into memory
e use some internal sorting algorithm (e.g., quick sort)
* can produce even larger runs (later)
* write all the M pages as a run

T T INPUT 1
- I |
T |
[] INPUT2 | —
O - /
[T INPUT M
Disk

M Main memory buffers

N pages in input

[%] runs after pass 0

Cost:

2N pages read/written +
2 [ﬂ] seeks
M

ie. 2Nty + 2 [%] t

3,4 (6,2 |9,4| 18,7 |5,6] [3,1] |2,7
~ U 4
L 2,3 1,3 2,6
\//
4.4 5,6 7
6,9 7.8

-
Disk

CSE462/562 (Spring 2024): Lecture 10

Input file
PASS 0

21

General multi-way merge sort

e Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap/max-heap (aka priority queue)

» supports O(logM) time insertion of any item and deletion of the smallest/largest item

* acomplete binary tree where parent is smaller/larger than both children

* how to implement
* numbering nodes level by level sequentially from 1, store in an array A[1..n]

* (how to translate 1-based index to 0-based in C/C++?)

» parentof A[i] is A[i/2], left child of A[i] is A[i * 2], right child of A[i] is A[i * 2 + 1]
e push-down or push-up to maintain the variant

> INPUT 1 < >
_////,
.
| »| INPUT \
¢ o "2 —oureur of | I
e o o
| /
| INPUT M-1 —
Disk M Main memory buffers Disk 4 [1 4 3 8 >)

CSE462/562 (Spring 2024): Lecture 10

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap
* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read
» for each loaded page

For illustration, let’s now assume
M = 4 instead of 3 from now on.

* insert the first key into the min-heap Run 1 Run2 Run3

* maintain next slot ids for each page 2,3 13 2.6
* Repeatedly remove the smallest item from the min heap 4.4 5.6 7

* and replace it with the next key in its run 6,9 7.8

* write out the output page once it’s full

PASS 1

CSE462/562 (Spring 2024): Lecture 10 23

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap
* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read
» for each loaded page

For illustration, let’s now assume
M = 4 instead of 3 from now on.

* insert the first key into the min-heap Run 1 Run2 Run3

* maintain next slot ids for each page 2,3 13 2.6
* Repeatedly remove the smallest item from the min heap 44 56| 7

* and replace it with the next key in its run next 6,9 7.8

* write out the output page once it’s full

input / ”ew
Zy
/ output

[
(1)3
/

/

2,6

PASS 1

from run 2

M Main memory buffers

CSE462/562 (Spring 2024): Lecture 10 24

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run

* maintain a min-heap

* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read

» for each loaded page

* insert the first key into the min-heap Run 1
* maintain next slot ids for each page 2,3

* Repeatedly remove the smallest item from the min heap 44
* and replace it with the next key in its run next 6,9

* write out the output page once it’s full

input / next_sid

2 3

/
v
5,6
/
v

2,6

output

M Main memory buffers

_—>7,8

Run 2

1,3
5,6

/7

For illustration, let’s now assume
M = 4 instead of 3 from now on.

Run 3
2,6

CSE462/562 (Spring 2024): Lecture 10

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap
* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read
» for each loaded page
* insert the first key into the min-heap
* maintain next slot ids for each page
* Repeatedly remove the smallest item from the min heap
e and replace it with the next key in its run
* write out the output page once it’s full

input

next_sid

4

\\‘

UT

, 6

/
/
| 4

2,6

output

M Main memory buffers

next

For illustration, let’s now assume
M = 4 instead of 3 from now on.

Run 1 Run 2 Run 3
2,3 1,3 2,6
/4,4 5,6 _—7 7
6,9 7,8 /
]

CSE462/562 (Spring 2024): Lecture 10

\l/ PASS 1

1,2

26

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run

* maintain a min-heap

* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read

» for each loaded page

* insert the first key into the min-heap
* maintain next slot ids for each page

* Repeatedly remove the smallest item from the min heap
e and replace it with the next key in its run

* write out the output page once it’s full

input

output

M Main memory buffers

For illustration, let’s now assume
M = 4 instead of 3 from now on.

Run 1 Run 2 Run 3
2,3 1,3 2,6
4,4 5,6 7
6,9 7,8 /

|

N pages to read/write per pass

N
[logM_l [EH merge passes
Cost per merge pass:
2N pages read/written +
2N seeks

Total cost for merge passes:

2(t7 + ts)N[logy_q -]

CSE462/562 (Spring 2024): Lecture 10

\M PASS 1

1,2
2,3
3,4
4,5
6,6
6,7
7,8

9

27

Cost analysis

* Cost analysis: » gain of utilizing all available buffers
e Pass0: 2Nty + 2 [%} to " importance of a high fan-in during merging

* Pass 1,2, ..combined: 2(t; + ts)N[logM—l[%”

* Total = 2t N ([logM_l [%H + 1) + 2t ([ﬁ + N[logM_l[%ﬂ)

N M=3 =5 =9 =17 =129 =257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

e Can we do it better?

CSE462/562 (Spring 2024): Lecture 10

Batching 1/Os for merge sort

e Refinement 1

* reducing random |/Os by reading/writing B pages per run during merge

* using (M — 1)-way merge sort

* memory usage increases to MB pages
* number of pages transferred do not change

* but the number of random seeks per merge pass reduced to approximately Z[E]
N N N NN\
* total cost reduced to 2t N ([logM_1 [ﬁ” + 1) + 2tg ([ﬁ] + [E] [lOQM—ﬂﬁﬂ)

input
1{(2|..|B
output
1{|12]..|B 1((2|..|B
1{|12]..|B
MB Main memory buffers

Exercise: what if we only have M pages instead of MB
pages and still read/write pages in B-page batches?

2trN | |1 N 1)+2 N N [N
o (sl 1) 26 ([+ 1ot

CSE462/562 (Spring 2024): Lecture 10

29

Pipelining output

e Refinement 2
* in most cases, do not need to write
» pipelining to the next operator
e or output to user

the final file

* Hence, no need to count the write of the final pass

* total cost reduced to tN (2 [loglMJ_l [%” + 1) + & (2 [%} + [%](Zﬂoglyl_l[%ﬂ — 1))

input
1{(2|..|B
output
1/|2|..|B 1((2..|B
1/|2|..|B
MB Main memory buffers

CSE462/562 (Spring 2024): Lecture 10

30

Tournament sort

* Refinement 3
e producing initial runs as large as possible in pass 0
« Alternative to quick-sort: “tournament sort” (a.k.a. “heapsort”, “replacement selection”)

* Keep two heaps in memory, H1 and I/, reserve an input buffer page and an output buffer page
read M-2 pages of records, inserting into HI1;
while (records left) {

m = Hl.removemin(),; put m in output buffer;
if (H1 is empty)

swap Hl1l and (pointer swap only!); start new output run;
else

read in a new record r (use 1 buffer for input pages);
if (r < m) .insert(r);
else Hl.insert(r);

}
H1l.output(); start new run; .output() ;

Tournament sort

* Tournament sort explained:

12 |

8

[10
12 | 3 |
= L 5

INPUT

CURRENT SET

OUTPUT

 1input, 1 output, M - 2 for current and next set (min heaps)
 Main idea: ensure the smallest key in the current set (H1) is greater than any key that
has been written to this output run.
* Ifit can’t be satisfied, write to the , Which goes into the next run.
* Memory usage of the min-heaps combined never exceeds the M-2 pages

CSE462/562 (Spring 2024): Lecture 10

Tournament sort

Fact: average length of a run is 2(M-2)

Total cost reduced to on average

ot (2 togp |

Worst-Case:

2M — 4

* What is min length of a run?

e How does this arise?

Best-Case:

* What is max length of a run?

* How does this arise?

N N
H + 1) + & (2 [ZM — 4} + [E](Z[logl

Quicksort is faster, but ... longer runs often means fewer passes!

CSE462/562 (Spring 2024): Lecture 10

JlZM 4

1= 1))

33

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on sorting column(s).

ldea: Can retrieve records in order by traversing leaf pages.

Is this a good idea?

Cases to consider:
- B+ treeis clustered Good idea since it’s already available!

- B+ treeis not clustered Could be a very bad idea! (Random 1/0)
unless all columns are included in the key

CSE462/562 (Spridg@2024): Lecture 10

Certain basic operator implementation w/ sorting

* Some basic operators can be implemented on top of sorting
e Can use pipelining over the sort results

* Examples
* deduplication (projection in standard RA)
* maintain the last key
» for each output from the sort
* otherwise, discard it
* aggregation
* maintain the aggregation state
» for each output from the sort
* emit the finalized aggregation value if it is different from the last key (unless this is the first)
* otherwise, accumulate it to the state
* exercise: work out the details of U,N, —

* No additional I/O due to pipelining
e can support rewinding (why?)

CSE462/562 (Spring 2024): Lecture 10

35

This lecture

* Summary:
e Aggregation and set operators
e External sorting (multi-way merge-sort)

* Next lecture
* Join algorithms

* Reminders:

 HW4 released today, due on 4/22/2024, 23:59 PM EDT
* Project 4 due next Monday, 4/15/2024, 23:59 PM EDT

CSE462/562 (Spring 2024): Lecture 10

36

	Slide 1: CSE462/562: Database Systems (Spring 24)
	Slide 2: Reminders
	Slide 3: Recap on Single-Table QP
	Slide 4: Measuring cost
	Slide 5: Measuring cost
	Slide 6: Aggregation bold italic gamma without grouping
	Slide 7: Aggregation bold italic gamma without grouping
	Slide 8: Aggregation bold italic gamma with grouping
	Slide 9: Aggregation bold italic gamma with grouping
	Slide 10: Aggregation bold italic gamma with grouping
	Slide 11: Aggregation bold italic gamma with grouping
	Slide 12: Aggregation bold italic gamma with grouping
	Slide 13: Aggregation bold italic gamma with grouping
	Slide 14: Set operators union ,, intersection , ,minus
	Slide 15: Sort operator
	Slide 16: External sorting
	Slide 17: In-memory two-way merge-sort: a starting point
	Slide 18: External two-way merge sort
	Slide 19: External two-way merge sort
	Slide 20: External two-way merge sort
	Slide 21: External multi-way merge sort
	Slide 22: General multi-way merge sort
	Slide 23: General multi-way merge sort
	Slide 24: General multi-way merge sort
	Slide 25: General multi-way merge sort
	Slide 26: General multi-way merge sort
	Slide 27: General multi-way merge sort
	Slide 28: Cost analysis
	Slide 29: Batching I/Os for merge sort
	Slide 30: Pipelining output
	Slide 31: Tournament sort
	Slide 32: Tournament sort
	Slide 33: Tournament sort
	Slide 34: Using B+ Trees for Sorting
	Slide 35: Certain basic operator implementation w/ sorting
	Slide 36: This lecture

