CSE462/562: Database Systems (Spring 24) Lecture 10: Single-table query processing (Part 2) 4/8/2024

Reminders

- HW4 released today, due on 4/22/2024, 23:59 PM EDT
- Project 4 due next Monday, 4/15/2024, 23:59 PM EDT

Recap on Single-Table QP

Measuring cost

- We'll start with the simplest single-table queries w/o or w/ aggregations
 - How to translate it into a query plan?
 - How to implement each operator?
 - How to measure the cost of each operator?
- For disk-based systems, we mainly measure the number of I/Os
 - Differences between random I/O and sequential I/O
 - Faster storage -> also need to measure the CPU cost
- A simple cost model
 - t_T : average time to transfer a page of data (data transfer time)
 - t_S : average time to randomly seek data (seek time + rotation delay)
 - For SSD, time overhead for initiating an I/O request
 - Cost = $B \times t_T + S \times t_S$
 - *B*: number of pages read/written; *S*: number of random I/O

Typical t_T and T_S

	HDD*	SSD†
t_T (ms)	0.1	0.01
<i>t_s</i> (ms)	4	0.09

Data from DB Concept book (Ch. 15.2). Assuming 4KB pages.

- * typical HDD with 40 MB/s transfer rate,
- 15000 rpm disk in 2018
- + typical SATA SSD that supports 10K IOPS (QD-

1), 400 MB/s sequential read rate

Measuring cost

- Other assumptions
 - Ignoring the buffer effect for random pages
 - Do consider the private workspace size *M* for the operators
 - Omitting the cost of transferring output to the user/disk
 - Common to any equivalent plan
- Notations: for relation *R*
 - T_R : number of records, N_R : number of pages in its heap file, B_R : (average) number of tuples per page
 - h_I : height of a B-tree index I over the file
 - *M*: private workspace size in pages
- Running example
 - $t_S = 4 ms$, $t_T = 0.1 ms$, 4000-byte page
 - Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)
 - 50 bytes/tuple, $B_R = 80$, $T_R = 40,000$, $N_R = 500$
 - Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)
 - 20 bytes/tuple, $B_E = 200$, $T_E = 200,000$, $N_E = 1000$

- $\gamma_{F_1(E_1),F_2(E_2),...,F_k(E_k)}Q$
 - Blocking
 - Only produce one row of output
 - An aggregation can be expressed as three functions: $F = (F^{init}, F^{acc}, F^{final})$
 - Initialization F^{init} : $void \rightarrow A$ (where A is some internal state of the aggregation)
 - Accumulation $F^{acc}: (A, T) \rightarrow A \text{ or } (A, T) \rightarrow void$
 - Finalization $F^{final}: A \rightarrow V$ (where V is the final type of the aggregation)
 - Some systems also have an optional combine function $F^{combine}$: $(A, A) \rightarrow A$
 - allows parallelizing the aggregation
 - Example: AVG of integers
 - AVG^{init} (): create a pair of (s, c) -- s: sum of values, c: number of values
 - $AVG^{acc}((s,c),x) = (s+x,c+1)$
 - $AVG^{final}((s,c)) = 1.0 * s / c$
 - Cost: does not add additional I/O cost

F is an aggregation function, e.g., SUM, COUNT, VAR, STDDEV, AVG, MIN, MAX or UDA etc.

• Example: AVG of integers

F is an aggregation function, e.g.,

- AVG^{init} (): create a pair of (s, c) -- s: sum of value SUM, COUNT, VAR, STDDEV, AVG, MIN, MAX or UDA etc.
- $AVG^{acc}((s,c),x) = (s+x,c)$
- $AVG^{final}((s,c)) = 1.0 * s / c$
- Consider a column in a table with the following values
 - 5, 4, 1, 3, 2
 - Steps:
 - AVG^{init} () = (0.0, 0)
 - $AVG^{acc}((0.0, 0), 5) = (5.0, 1)$
 - $AVG^{acc}((5.0, 1), 4) = (9.0, 2)$
 - $AVG^{acc}((9.0, 2), 1) = (10.0, 3)$
 - $AVG^{acc}((10.0, 3), 3) = (13.0, 4)$
 - $AVG^{acc}((13.0, 4), 2) = (15.0, 5)$
 - $AVG^{final}((15.0,5)) = 3.0 = \frac{5+4+1+3+2}{5}$

- $G_1, G_2, ..., G_n \gamma_{F_1(E_1), F_2(E_2), ..., F_k(E_k)} Q$
 - Blocking
 - One record per group (distinct values in G_1, G_2, \dots, G_n)
 - Let group by columns be $\mathcal{G} = (G_1, G_2, \dots, G_n)$
 - Solution: sorting or hashing

- $G_1, G_2, ..., G_n \gamma_{F_1(E_1), F_2(E_2), ..., F_k(E_k)} Q$
 - Blocking
 - One record per group (distinct values in G_1, G_2, \dots, G_n)
 - Let group by columns be $\mathcal{G} = (G_1, G_2, \dots, G_n)$
 - Sort-based solution: sort all tuples in Q on G; for each result t
 - 1. If *t* is the first one, $g \leftarrow \pi_{\mathcal{G}} t$ and $a_1 \leftarrow F_1^{init}(), \dots a_k \leftarrow F_k^{init}()$
 - 2. If *t* is not the first and $\pi_{\mathcal{G}}t \neq g$, emit $g \circ \left(F_1^{final}(a_1), \dots, F_k^{final}(a_k)\right)$
 - Then, $g \leftarrow \pi_{\mathcal{G}} t$ and $a_1 \leftarrow F_1^{init}(), ..., a_k \leftarrow F_k^{init}()$
 - 3. In both cases, $a_1 \leftarrow F_1^{acc}(a_1, \pi_{E_1}t), \dots a_k \leftarrow F_k^{acc}(a_k, \pi_{E_k}t)$
 - 4. After the last record is read, emit the last group as $g \circ (F_1^{final}(a_1), \dots F_k^{final}(a_k))$
 - If there are too many groups, use external sorting
 - Optimization opportunities (next lecture)

- Example for sort-based solution:
 - Consider two columns (x, y) with the following values
 - (1,1.0), (2,2.0), (1,4.0), (2,6.0)
 - $x \gamma_{SUM}(y)$
 - Step 1: sort by x
 - (1,1.0), (1,4.0), (2,2.0), (2,6.0)
 - Step 2: scan and calculate the group aggregates
 - Scan (1, 1.0): $g \leftarrow x = 1, a_1 \leftarrow 0.0 + 1.0 = 1.0$
 - Scan (1, 4.0): $a_1 \leftarrow a_1 + 4.0 = 5$
 - Scan (2, 2.0):
 - Since $x = 2 \neq g = 1$, emit $(g, a_1) = (1, 5.0)$ as a result
 - $g \leftarrow x = 2, a_1 \leftarrow 0.0 + 2.0 = 2.0$
 - Scan (2, 6.0): $a_1 \leftarrow a_1 + 6.0 = 8.0$
 - Step 3: emit the final group: $(g, a_1) = (2, 8.0)$

Result

x	SUM(y)	
1	5.0	
2	8.0	

- $G_1, G_2, \dots, G_n \gamma_{F_1(E_1), F_2(E_2), \dots, F_k(E_k)} Q$
 - Blocking
 - One record per group (distinct values in G_1, G_2, \dots, G_n)
 - Let group by columns be $\mathcal{G} = (G_1, G_2, \dots, G_n)$ or $\bigcup_{1 \le i \le n} Var(G_i)$
 - Hash-based solution: create a hash table from \mathcal{G} to (A_1, A_2, \dots, A_k)
 - Maintain the hash table using the aggregation functions while reading records from Q
 - After deplete the records in Q, scan the hash table, and
 - emit one row for each distinct value in *G* and compute its final value using the finalization functions
 - Again, if there are too many groups, use external hashing
 - Optimization opportunities (next lecture)

- Example for hash-based solution:
 - Consider two columns (x, y) with the following values
 - (1,1.0), (2,2.0), (1,4.0), (2,6.0)
 - assume h(1) = 2, h(2) = 0
 - $x \gamma_{SUM(y)}$
 - Step 1: create an empty hash table
 - Step 2: scan records and maintain aggregates
 - scan (1, 1.0): $x[h(1)] \leftarrow x = 1$, $a_1[h(1)] \leftarrow 0.0 + y = 1.0$
 - scan (2, 2.0): $x[h(2)] \leftarrow x = 2, a_1[h(2)] \leftarrow 0.0 + y = 2.0$

- Example for hash-based solution:
 - Consider two columns (x, y) with the following values
 - (1,1.0), (2,2.0), (1,4.0), (2,6.0)
 - assume h(1) = 2, h(2) = 0
 - $x \gamma_{SUM(y)}$
 - Step 1: create an empty hash table
 - Step 2: scan records and maintain aggregates
 - scan (1, 1.0): $x[h(1)] \leftarrow x = 1$, $a_1[h(1)] \leftarrow 0.0 + y = 1.0$
 - scan (2, 2.0): $x[h(2)] \leftarrow x = 2, a_1[h(2)] \leftarrow 0.0 + y = 2.0$
 - scan (1, 4.0): $a_1[h(1)] \leftarrow a_1[h(1)] + y = 1.0 + 4.0 = 5.0$
 - scan (2, 6.0): $a_1[h(2)] \leftarrow a_1[h(2)] + y = 2.0 + 6.0 = 8.0$
 - Step 3: scan hash table and emit results

Set operators $\cup, \cap, -$

- SQL performs deduplication before the set operators by default, unless one specifies ALL
 - e.g., A = {1, 1, 2}, B = {1, 2}
 - SELECT * FROM A EXCEPT SELECT * FROM B; -- result is empty
 - SELECT * FROM A EXCEPT ALL SELECT * FROM B; -- result is {1} (one row)
 - UNION ALL can be made pipelining: emit everything from LHS and then RHS
 - All the others are similar: using UNION as an example
 - Solution: sorting or hashing
 - sorting: sort A and B separately, merge them together by removing any duplicates
 - Similar to a sort-merge join we will discuss in later lectures
 - hashing: create a hash table over all the attributes, scan A and B
 - Only keep the first occurrence of each distinct value
 - Once again, optimization opportunities exist when the result set(s) of A and/or B do not fit in memory

Sort operator

- Use cases
 - ORDER BY
 - For Sort-Merge Join (next lecture)
 - For bulk loading tree indexes
 - ...
- If data fit in memory -- easy
 - quick sort
 - merge sort
 - ...

External sorting

- Problem: sort or hashing 1TB of data over 1GB of RAM
 - Why not virtual memory?
 - Swaps involve expensive random I/Os
 - Why not using B-Tree/extendible hashing/linear hashing?
 - Dynamic structures carry additional overhead for maintenance (not needed in QP)
 - Missing optimization opportunities with hybrid approach (see later)
- General wisdom:
 - I/O cost dominates the total cost
 - Design algorithms to reduce the number of I/Os

In-memory two-way merge-sort: a starting point

- Recall the two-way merge-sort
 - given a list of items in A[0..n-1]
 - recursively divide and conquer the problem
 - divide the list into two halves $A_1\left[0, \left\lfloor \frac{n}{2} \right\rfloor\right]$, $A_2\left[\left\lfloor \frac{n}{2} \right\rfloor + 1, n-1\right]$
 - merge-sort A_1 and A_2 individually
 - merge the two sorted list A_1, A_2

External two-way merge sort

- Needs 3 buffers
- Instead of recursion
 - works bottom up from the input

External two-way merge sort

- Needs 3 buffers
- Instead of recursion
 - works bottom-up from the input

External two-way merge sort

• Input: N pages

Disk file

- Cost for a pass: reading & writing N pages once •
- # of passes: height of the tree = $\lfloor \log_2 N \rfloor + 1$
- Total cost: $2N(\lfloor \log_2 N \rfloor + 1) \rfloor / Os$
 - Transfer cost: $2t_T N([\log_2 N] + 1)$
 - Seek cost: $2t_S N([log_2 N] + 1)$
 - $total = 2(t_T + t_S)N([\log_2 N] + 1)$

External multi-way merge sort

- How do we fully utilize all the *M* buffers?
 - Solution: (M-1)-way merge-sort
- Pass 0: internal sort to produce initial runs
 - read every *M* pages into memory
 - use some internal sorting algorithm (e.g., quick sort)
 - can produce even larger runs (later)
 - write all the *M* pages as a run

N pages in input $\left[\frac{N}{M}\right]$ runs after pass 0 Cost: 2N pages read/written + $2\left[\frac{N}{M}\right]$ seeks i.e. $2Nt_T + 2\left[\frac{N}{M}\right]t_S$ Input file 6 6.2 9,4 8,7 5,6 3.1 PASS 0 2,6 7 1,3 5,6 7,8 6,9

- Pass 1, 2, ...: merge as many runs as possible from previous pass into a sorted run
 - maintain a min-heap/max-heap (aka priority queue)
 - supports O(logM) time insertion of any item and deletion of the smallest/largest item
 - a complete binary tree where parent is smaller/larger than both children
 - how to implement
 - numbering nodes level by level sequentially from 1, store in an array A[1..n]
 - (how to translate 1-based index to 0-based in C/C++?)
 - parent of A[i] is A[i/2], left child of A[i] is A[i * 2], right child of A[i] is A[i * 2 + 1]
 - push-down or push-up to maintain the variant

- Pass 1, 2, ...: merge as many runs as possible from previous pass into a sorted run
 - maintain *a min-heap*
 - load one page from each of the M 1 runs
 - and maintain pointers of next page to read
 - for each loaded page
 - insert the first key into the min-heap
 - maintain next slot ids for each page
 - Repeatedly remove the smallest item from the min heap
 - and replace it with the next key in its run
 - write out the output page once it's full

PASS 1

- Pass 1, 2, ...: merge as many runs as possible from previous pass into a sorted run
 - maintain *a min-heap*
 - load one page from each of the M-1 runs
 - and maintain pointers of next page to read
 - for each loaded page
 - insert the first key into the min-heap
 - maintain next slot ids for each page
 - Repeatedly remove the smallest item from the min heap
 - and replace it with the next key in its run
 - write out the output page once it's full

For illustration, let's now assume M = 4 instead of 3 from now on.

next

- Pass 1, 2, ...: merge as many runs as possible from previous pass into a sorted run
 - maintain *a min-heap*
 - load one page from each of the M 1 runs
 - and maintain pointers of next page to read
 - for each loaded page

input

2, 3

5,6

2,6

M Main memory buffers

- insert the first key into the min-heap
- maintain next slot ids for each page
- Repeatedly remove the smallest item from the min heap
 - and replace it with the next key in its run
 - write out the output page once it's full

PASS 1

For illustration, let's now assume

- Pass 1, 2, ...: merge as many runs as possible from previous pass into a sorted run
 - maintain *a min-heap*
 - load one page from each of the M 1 runs
 - and maintain pointers of next page to read
 - for each loaded page
 - insert the first key into the min-heap
 - maintain next slot ids for each page
 - Repeatedly remove the smallest item from the min heap
 - and replace it with the next key in its run
 - write out the output page once it's full

2,3

- Pass 1, 2, ...: merge as many runs as possible from previous pass into a sorted run
 - maintain *a min-heap*
 - load one page from each of the M-1 runs
 - and maintain pointers of next page to read
 - for each loaded page
 - insert the first key into the min-heap
 - maintain next slot ids for each page
 - Repeatedly remove the smallest item from the min heap
 - and replace it with the next key in its run
 - write out the output page once it's full

N pages to read/write per pass $\begin{bmatrix} log_{M-1} \\ \frac{N}{M} \end{bmatrix}$ merge passes Cost per merge pass: 2N pages read/written + 2N seeks Total cost for merge passes: $2(t_T + t_S)N[\log_{M-1}[\frac{N}{M}]]$

Cost analysis

- Cost analysis:
 - Pass 0: $2Nt_T + 2\left[\frac{N}{M}\right]t_S$

- gain of utilizing all available buffers
- importance of a high fan-in during merging
- Pass 1, 2, ... combined: $2(t_T + t_S)N[\log_{M-1}[\frac{N}{M}]]$
- Total = $2t_T N\left(\left[log_{M-1}\left[\frac{N}{M}\right]\right] + 1\right) + 2t_S\left(\left[\frac{N}{M}\right] + N\left[log_{M-1}\left[\frac{N}{M}\right]\right]\right)$

Ν	M=3	=5	=9	=17	=129	=257
100	7	4	3	2	1	1
1,000	10	5	4	3	2	2
10,000	13	7	5	4	2	2
100,000	17	9	6	5	3	3
1,000,000	20	10	7	5	3	3
10,000,000	23	12	8	6	4	3
100,000,000	26	14	9	7	4	4
1,000,000,000	30	15	10	8	5	4

• Can we do it better?

Batching I/Os for merge sort

- Refinement 1
 - reducing random I/Os by reading/writing *B* pages per run during merge
 - using (M 1)-way merge sort
 - memory usage increases to *MB* pages
 - number of pages transferred do not change
 - but the number of random seeks per merge pass reduced to approximately $2\left[\frac{N}{P}\right]$
 - total cost reduced to $2t_T N\left(\left[log_{M-1}\left[\frac{N}{MB}\right]\right] + 1\right) + 2t_S\left(\left[\frac{N}{MB}\right] + \left[\frac{N}{B}\right]\left[log_{M-1}\left[\frac{N}{MB}\right]\right]\right)^{\frac{1}{2}}$

Exercise: what if we only have M pages instead of MB pages and still read/write pages in B-page batches?

$$2t_T N\left(\left\lceil \log_{\lfloor\frac{M}{B}\rfloor-1} \left\lceil \frac{N}{M} \right\rceil \right\rceil + 1\right) + 2t_S\left(\left\lceil \frac{N}{M} \right\rceil + \lceil \frac{N}{B} \rceil \lceil \log_{\lfloor\frac{M}{B}\rfloor-1} \lceil \frac{N}{M} \rceil \rceil\right)$$

Pipelining output

- Refinement 2
 - in most cases, do not need to write the final file
 - pipelining to the next operator
 - or output to user
 - Hence, no need to count the write of the final pass
 - total cost reduced to $t_T N\left(2\left[log_{\left\lfloor\frac{M}{B}\right\rfloor-1}\left\lceil\frac{N}{M}\right\rceil\right]+1\right)+t_S\left(2\left\lceil\frac{N}{M}\right\rceil+\left\lceil\frac{N}{B}\right\rceil(2\left\lceil log_{\left\lfloor\frac{M}{B}\right\rfloor-1}\left\lceil\frac{N}{M}\right\rceil\right\rceil-1)\right)$

Tournament sort

- Refinement 3
 - producing initial runs as large as possible in pass 0
 - Alternative to quick-sort: "tournament sort" (a.k.a. "heapsort", "replacement selection")
- Keep two heaps in memory, H1 and H2, reserve an input buffer page and an output buffer page read M-2 pages of records, inserting into H1; while (records left) { m = H1.removemin(); put m in output buffer; if (H1 is empty) swap H1 and H2 (pointer swap only!); start new output run; else read in a new record r (use 1 buffer for input pages); if (r < m) H2.insert(r); else H1.insert(r); H1.output(); start new run; H2.output();

Tournament sort

• Tournament sort explained:

- <u>1 input, 1 output, M 2 for current and next set (min heaps)</u>
- Main idea: ensure the *smallest* key in the <u>current set (H1)</u> is *greater* than any key that has been written to this output run.
 - If it can't be satisfied, write to the next set (H2), which goes into the next run.
- Memory usage of the min-heaps combined never exceeds the M-2 pages

Tournament sort

- Fact: average length of a run is 2(M-2)
- Total cost reduced to on average

$$t_T N\left(2\left[\log_{\left\lfloor\frac{M}{B}\right\rfloor-1}\left\lceil\frac{N}{2M-4}\right\rceil\right]+1\right)+t_S\left(2\left\lceil\frac{N}{2M-4}\right\rceil+\lceil\frac{N}{B}\right](2\lceil\log_{\left\lfloor\frac{M}{B}\right\rfloor-1}\lceil\frac{N}{2M-4}\rceil)-1)\right)$$

- Worst-Case:
 - What is min length of a run?
 - How does this arise?
- Best-Case:
 - What is max length of a run?
 - How does this arise?
- Quicksort is faster, but ... longer runs often means fewer passes!

- Scenario: Table to be sorted has B+ tree index on sorting column(s).
- Idea: Can retrieve records in order by traversing leaf pages.
- Is this a good idea?
- Cases to consider:
 - B+ tree is clustered
 - B+ tree is not clustered

Good idea since it's already available! Could be a very bad idea! (Random I/O) unless all columns are included in the key

Certain basic operator implementation w/ sorting

- Some basic operators can be implemented on top of sorting
 - Can use pipelining over the sort results
- Examples
 - deduplication (projection in standard RA)
 - maintain the last key
 - for each output from the sort
 - emit it if it is different from the last key
 - otherwise, discard it
 - aggregation
 - maintain the aggregation state
 - for each output from the sort
 - emit the finalized aggregation value if it is different from the last key (unless this is the first)
 - otherwise, accumulate it to the state
 - exercise: work out the details of $\cup, \cap, -$
- No additional I/O due to pipelining
 - can support rewinding (why?)

This lecture

- Summary:
 - Aggregation and set operators
 - External sorting (multi-way merge-sort)
- Next lecture
 - Join algorithms
- Reminders:
 - HW4 released today, due on 4/22/2024, 23:59 PM EDT
 - Project 4 due next Monday, 4/15/2024, 23:59 PM EDT