
CSE462/562: Database Systems (Spring 24)

Lecture 10: Single-table query processing 
(Part 2)

4/8/2024



Reminders
• HW4 released today, due on 4/22/2024, 23:59 PM EDT

• Project 4 due next Monday, 4/15/2024, 23:59 PM EDT
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Recap on Single-Table QP
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SELECT 𝐺, 𝑆𝑈𝑀 𝐸
FROM 𝑅
WHERE 𝑃
GROUP BY 𝐺
HAVING 𝑃′

ORDER BY S

𝑆𝑜𝑟𝑡𝑆 𝜎𝑃′  𝐺𝛾𝑆𝑈𝑀 𝐸 𝜎𝑃𝑅

SELECT 𝐸
FROM 𝑅
WHERE 𝑃

ORDER BY S

𝑆𝑜𝑟𝑡𝑆 𝜋𝐸𝜎𝑃𝑅

A few basic operators
Selection: 𝜎
Projection: 𝜋 (w/ and w/o deduplication)
Aggregation: 𝛾 w/o or w/ group by
Set operators: ∪, −,∩
Sorting 
Cartesian product: × or Join: ⋈



Measuring cost
• We’ll start with the simplest single-table queries w/o or w/ aggregations

• How to translate it into a query plan?
• How to implement each operator?
• How to measure the cost of each operator?

• For disk-based systems, we mainly measure the number of I/Os
• Differences between random I/O and sequential I/O
• Faster storage -> also need to measure the CPU cost

• A simple cost model 
• 𝑡𝑇: average time to transfer a page of data (data transfer time)
• 𝑡𝑆: average time to randomly seek data (seek time + rotation delay)

• For SSD, time overhead for initiating an I/O request

• Cost = 𝐵 × 𝑡𝑇 + 𝑆 × 𝑡𝑆

• 𝐵: number of pages read/written; 𝑆: number of random I/O
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HDD* SSD†

𝑡𝑇  (ms) 0.1 0.01

𝑡𝑆 (ms) 4 0.09

Typical 𝑡𝑇  and 𝑇𝑆

Data from DB Concept book (Ch. 15.2).
Assuming 4KB pages.
* typical HDD with 40 MB/s transfer rate, 
15000 rpm disk in 2018 
† typical SATA SSD that supports 10K IOPS (QD-
1),  400 MB/s sequential read rate



Measuring cost
• Other assumptions

• Ignoring the buffer effect for random pages
• Do consider the private workspace size 𝑀 for the operators

• Omitting the cost of transferring output to the user/disk
• Common to any equivalent plan

• Notations: for relation 𝑅
• 𝑇𝑅: number of records, 𝑁𝑅: number of pages in its heap file, 𝐵𝑅: (average) number of tuples per page
• ℎ𝐼: height of a B-tree index 𝐼 over the file
• 𝑀: private workspace size in pages

• Running example
• 𝑡𝑆 = 4 𝑚𝑠, 𝑡𝑇 = 0.1 𝑚𝑠, 4000-byte page
• Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

• 50 bytes/tuple, 𝐵𝑅 = 80, 𝑇𝑅 = 40,000, 𝑁𝑅 = 500
• Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

• 20 bytes/tuple, 𝐵𝐸 = 200, 𝑇𝐸 = 200,000, 𝑁𝐸 = 1000
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Aggregation 𝜸 without grouping
• 𝛾𝐹1 𝐸1 ,𝐹2 𝐸2 ,…,𝐹𝑘 𝐸𝑘

𝑄
• Blocking
• Only produce one row of output

• An aggregation can be expressed as three functions: 𝐹 = 𝐹𝑖𝑛𝑖𝑡, 𝐹𝑎𝑐𝑐 , 𝐹𝑓𝑖𝑛𝑎𝑙

• Initialization 𝐹𝑖𝑛𝑖𝑡: 𝑣𝑜𝑖𝑑 → 𝐴 (where 𝐴 is some internal state of the aggregation)
• Accumulation 𝐹𝑎𝑐𝑐: 𝐴, 𝑇 → 𝐴 or 𝐴, 𝑇 → 𝑣𝑜𝑖𝑑
• Finalization 𝐹𝑓𝑖𝑛𝑎𝑙: 𝐴 → 𝑉 (where V is the final type of the aggregation)
• Some systems also have an optional combine function 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒: 𝐴, 𝐴 → 𝐴

• allows parallelizing the aggregation

• Example: AVG of integers
• 𝐴𝑉𝐺𝑖𝑛𝑖𝑡  : create a pair of 𝑠, 𝑐  -- s: sum of values, c: number of values

• 𝐴𝑉𝐺𝑎𝑐𝑐 𝑠, 𝑐 , 𝑥 = 𝑠 + 𝑥, 𝑐 + 1

• 𝐴𝑉𝐺𝑓𝑖𝑛𝑎𝑙 𝑠, 𝑐 = 1.0 ∗ 𝑠 / 𝑐

• Cost: does not add additional I/O cost
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𝐹 is an aggregation function, e.g., 
𝑆𝑈𝑀, 𝐶𝑂𝑈𝑁𝑇, 𝑉𝐴𝑅, 𝑆𝑇𝐷𝐷𝐸𝑉, 𝐴𝑉𝐺, 𝑀𝐼𝑁, 𝑀𝐴𝑋 or UDA etc.



Aggregation 𝜸 without grouping
• Example: AVG of integers

• 𝐴𝑉𝐺𝑖𝑛𝑖𝑡  : create a pair of 𝑠, 𝑐  -- s: sum of values, c: number of values

• 𝐴𝑉𝐺𝑎𝑐𝑐 𝑠, 𝑐 , 𝑥 = 𝑠 + 𝑥, 𝑐

• 𝐴𝑉𝐺𝑓𝑖𝑛𝑎𝑙 𝑠, 𝑐 = 1.0 ∗ 𝑠 / 𝑐

• Consider a column in a table with the following values

• 5, 4, 1, 3, 2
• Steps:

• 𝐴𝑉𝐺𝑖𝑛𝑖𝑡  = (0.0, 0)

• 𝐴𝑉𝐺𝑎𝑐𝑐 0.0, 0 , 5 = 5.0, 1

• 𝐴𝑉𝐺𝑎𝑐𝑐 5.0, 1 , 4 = 9.0, 2

• 𝐴𝑉𝐺𝑎𝑐𝑐 9.0, 2 , 1 = 10.0, 3

• 𝐴𝑉𝐺𝑎𝑐𝑐 10.0, 3 , 3 = 13.0,4

• 𝐴𝑉𝐺𝑎𝑐𝑐 13.0, 4 , 2 = 15.0, 5

• 𝐴𝑉𝐺𝑓𝑖𝑛𝑎𝑙 15.0, 5 = 3.0 =
5+4+1+3+2

5
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𝐹 is an aggregation function, e.g., 
𝑆𝑈𝑀, 𝐶𝑂𝑈𝑁𝑇, 𝑉𝐴𝑅, 𝑆𝑇𝐷𝐷𝐸𝑉, 𝐴𝑉𝐺, 𝑀𝐼𝑁, 𝑀𝐴𝑋 or UDA etc.



Aggregation 𝜸 with grouping
•  𝐺1,𝐺2,…,𝐺𝑛

𝛾𝐹1 𝐸1 ,𝐹2 𝐸2 ,…,𝐹𝑘 𝐸𝑘
𝑄

• Blocking

• One record per group (distinct values in 𝐺1, 𝐺2, … , 𝐺𝑛)

• Let group by columns be 𝒢 = 𝐺1, 𝐺2, … , 𝐺𝑛

• Solution: sorting or hashing
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Aggregation 𝜸 with grouping
•  𝐺1,𝐺2,…,𝐺𝑛

𝛾𝐹1 𝐸1 ,𝐹2 𝐸2 ,…,𝐹𝑘 𝐸𝑘
𝑄

• Blocking

• One record per group (distinct values in 𝐺1, 𝐺2, … , 𝐺𝑛)

• Let group by columns be 𝒢 = 𝐺1, 𝐺2, … , 𝐺𝑛

• Sort-based solution: sort all tuples in 𝑄 on 𝒢; for each result 𝑡

1. If 𝑡 is the first one, 𝑔 ← 𝜋𝒢𝑡 and 𝑎1 ← 𝐹1
𝑖𝑛𝑖𝑡  , … ak ← 𝐹𝑘

𝑖𝑛𝑖𝑡  

2. If 𝑡 is not the first and 𝜋𝒢𝑡 ≠ 𝑔, emit g ∘ 𝐹1
𝑓𝑖𝑛𝑎𝑙

𝑎1 , … 𝐹𝑘
𝑓𝑖𝑛𝑎𝑙

𝑎𝑘

• Then, g ← 𝜋𝒢𝑡 and a1 ← 𝐹1
𝑖𝑛𝑖𝑡  , … ak ← 𝐹𝑘

𝑖𝑛𝑖𝑡  

3. In both cases, a1 ← 𝐹1
𝑎𝑐𝑐 𝑎1, 𝜋𝐸1

𝑡 , … ak ← 𝐹𝑘
𝑎𝑐𝑐 𝑎𝑘 , 𝜋𝐸𝑘

𝑡 

4. After the last record is read, emit the last group as g ∘ 𝐹1
𝑓𝑖𝑛𝑎𝑙

𝑎1 , … 𝐹𝑘
𝑓𝑖𝑛𝑎𝑙

𝑎𝑘

• If there are too many groups, use external sorting

• Optimization opportunities (next lecture)

CSE462/562 (Spring 2024): Lecture 10 9



Aggregation 𝜸 with grouping
• Example for sort-based solution:

• Consider two columns (x, y) with the following values

• 1, 1.0 , 2, 2.0 , 1, 4.0 , 2, 6.0

•  𝑥𝛾𝑆𝑈𝑀 𝑦

• Step 1: sort by x

• 1, 1.0 , 1, 4.0 , 2, 2.0 , 2, 6.0

• Step 2: scan and calculate the group aggregates

• Scan (1, 1.0): 𝑔 ← 𝑥 = 1, 𝑎1 ← 0.0 + 1.0 = 1.0

• Scan (1, 4.0): 𝑎1 ← 𝑎1 + 4.0 = 5

• Scan (2, 2.0):

• Since 𝑥 = 2 ≠ 𝑔 = 1, emit 𝑔, 𝑎1 = (1, 5.0) as a result

• 𝑔 ← 𝑥 = 2, 𝑎1 ← 0.0 + 2.0 = 2.0

• Scan (2, 6.0): 𝑎1 ← 𝑎1 + 6.0 = 8.0

• Step 3: emit the final group: 𝑔, 𝑎1 = 2, 8.0
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x SUM(y)

1 5.0

2 8.0

Result



Aggregation 𝜸 with grouping
•  𝐺1,𝐺2,…,𝐺𝑛

𝛾𝐹1 𝐸1 ,𝐹2 𝐸2 ,…,𝐹𝑘 𝐸𝑘
𝑄

• Blocking

• One record per group (distinct values in 𝐺1, 𝐺2, … , 𝐺𝑛)

• Let group by columns be 𝒢 = 𝐺1, 𝐺2, … , 𝐺𝑛  or 1ڂ≤𝑖≤𝑛 𝑉𝑎𝑟 𝐺𝑖

• Hash-based solution: create a hash table from 𝒢 to 𝐴1, 𝐴2, … , 𝐴𝑘

• Maintain the hash table using the aggregation functions while reading records from 𝑄

• After deplete the records in 𝑄, scan the hash table, and

• emit one row for each distinct value in 𝒢 and compute its final value using the finalization functions

• Again, if there are too many groups, use external hashing

• Optimization opportunities (next lecture)
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Aggregation 𝜸 with grouping
• Example for hash-based solution:

• Consider two columns (x, y) with the following values

• 1, 1.0 , 2, 2.0 , 1, 4.0 , 2, 6.0

• assume ℎ 1 = 2, ℎ 2 = 0

•  𝑥𝛾𝑆𝑈𝑀 𝑦

• Step 1: create an empty hash table

• Step 2: scan records and maintain aggregates

• scan (1, 1.0): 𝑥 ℎ 1 ← 𝑥 = 1, 𝑎1 ℎ 1 ← 0.0 + 𝑦 = 1.0

• scan (2, 2.0): 𝑥 ℎ 2 ← 𝑥 = 2, 𝑎1 ℎ 2 ← 0.0 + 𝑦 = 2.0
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h(x) 0 1 2 3

x 2 1

𝑎1 2.0 1.0

hash table



Aggregation 𝜸 with grouping
• Example for hash-based solution:

• Consider two columns (x, y) with the following values

• 1, 1.0 , 2, 2.0 , 1, 4.0 , 2, 6.0

• assume ℎ 1 = 2, ℎ 2 = 0

•  𝑥𝛾𝑆𝑈𝑀 𝑦

• Step 1: create an empty hash table

• Step 2: scan records and maintain aggregates

• scan (1, 1.0): 𝑥 ℎ 1 ← 𝑥 = 1, 𝑎1 ℎ 1 ← 0.0 + 𝑦 = 1.0

• scan (2, 2.0): 𝑥 ℎ 2 ← 𝑥 = 2, 𝑎1 ℎ 2 ← 0.0 + 𝑦 = 2.0

• scan (1, 4.0): 𝑎1 ℎ 1 ← 𝑎1 ℎ 1 + 𝑦 = 1.0 + 4.0 = 5.0

• scan (2, 6.0): 𝑎1 ℎ 2 ← 𝑎1 ℎ 2 + 𝑦 = 2.0 + 6.0 = 8.0

• Step 3: scan hash table and emit results
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hash table

h(x) 0 1 2 3

x 2 1

𝑎1 8.0 5.0

x SUM(y)

1 5.0

2 8.0

Result



Set operators ∪,∩ , −
• SQL performs deduplication before the set operators by default, unless one specifies ALL

• e.g., A = {1, 1, 2}, B = {1, 2}

• SELECT * FROM A EXCEPT SELECT * FROM B; -- result is empty

• SELECT * FROM A EXCEPT ALL SELECT * FROM B; -- result is {1} (one row)

• UNION ALL can be made pipelining: emit everything from LHS and then RHS

• All the others are similar: using UNION as an example

• Solution: sorting or hashing

• sorting: sort A and B separately, merge them together by removing any duplicates

• Similar to a sort-merge join we will discuss in later lectures

• hashing: create a hash table over all the attributes, scan 𝐴 and 𝐵

• Only keep the first occurrence of each distinct value

• Once again, optimization opportunities exist when the result set(s) of A and/or B do not fit in memory
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Sort operator
• Use cases

• ORDER BY

• For Sort-Merge Join (next lecture)

• For bulk loading tree indexes

• …

• If data fit in memory -- easy
• quick sort

• merge sort

• …
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External sorting
• Problem: sort or hashing 1TB of data over 1GB of RAM

• Why not virtual memory?

• Swaps involve expensive random I/Os

• Why not using B-Tree/extendible hashing/linear hashing?

• Dynamic structures carry additional overhead for maintenance (not needed in QP)

• Missing optimization opportunities with hybrid approach (see later)

• General wisdom:
• I/O cost dominates the total cost

• Design algorithms to reduce the number of I/Os
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In-memory two-way merge-sort: a starting point
• Recall the two-way merge-sort

• given a list of items in 𝐴[0. . 𝑛 − 1]
• recursively divide and conquer the problem

• divide the list into two halves 𝐴1 0. .
𝑛

2
, 𝐴2

𝑛

2
+ 1, 𝑛 − 1

• merge-sort 𝐴1 and 𝐴2 individually
• merge the two sorted list 𝐴1, 𝐴2
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𝐴

5

9

7

1

2

8

3

4

𝐴𝟏

5

10

7

1

𝑨𝟐

2

8

3

4

𝐴𝟏

1

5

7

10

𝑨𝟐

2

3

4

8

𝑨

1

2

3

4

5

7

8

10

divide
merge-sort 
sublists merge
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External two-way merge sort
• Needs 3 buffers

• Instead of recursion
• works bottom up from the input
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Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk fileDisk file

18



External two-way merge sort
• Needs 3 buffers

• Instead of recursion
• works bottom-up from the input
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Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2,7

3,4 5,62,6 4,9 7,8 1,3 2,7

2,3

4,6

4,7

8,9

1,3

5,6 7

2,3

4,4

6,7

8,9

1,2

3,5

6,6

1,2

2,3

3,4

4,5

6,6

6,7

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk file

6

6

2,6

7

7,8
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External two-way merge sort
• Input: N pages

• Cost for a pass: reading & writing N pages once

• # of passes: height of the tree = log2 𝑁 + 1

• Total cost: 2𝑁 log2 𝑁 + 1  I/Os
• Transfer cost: 2tT𝑁 log2 𝑁 + 1

• Seek cost: 2𝑡𝑆𝑁 𝑙𝑜𝑔2 𝑁 + 1

• total = 2 𝑡𝑇 + 𝑡𝑆 𝑁 log2 𝑁 + 1
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Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk fileDisk file

Not so efficient!

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2,7

3,4 5,62,6 4,9 7,8 1,3 2,7

2,3

4,6

4,7

8,9

1,3

5,6 7

2,3

4,4

6,7

8,9

1,2

3,5

6,6

1,2

2,3

3,4

4,5

6,6

6,7

6

6

2,6

7

7,8
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External multi-way merge sort
• How do we fully utilize all the 𝑀 buffers?

• Solution: (M-1)-way merge-sort

• Pass 0: internal sort to produce initial runs
• read every 𝑀 pages into memory

• use some internal sorting algorithm (e.g., quick sort)

• can produce even larger runs (later)

• write all the 𝑀 pages as a run
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M Main memory buffers

INPUT 1

INPUT M

DiskDisk

INPUT 2

. . .. . .

𝑁 pages in input

⌈
𝑁

𝑀
⌉ runs after pass 0

Cost: 
    2𝑁 pages read/written + 

    2
𝑁

𝑀
 seeks

 i.e. 2𝑁𝑡𝑇 + 2
𝑁

𝑀
𝑡𝑆

2,3

4,4

6,9

1,3

5,6

7,8

2,6

PASS 0

Input file3,4 6,2 9,4 8,7 5,6 3,1 2,7 6

7
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General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap/max-heap (aka priority queue)
• supports 𝑂 𝑙𝑜𝑔𝑀  time insertion of any item and deletion of the smallest/largest item
• a complete binary tree where parent is smaller/larger than both children
• how to implement

• numbering nodes level by level sequentially from 1,  store in an array 𝐴[1. . 𝑛]
• (how to translate 1-based index to 0-based in C/C++?)

• parent of 𝐴[𝑖] is 𝐴 𝑖/2 , left child of 𝐴 𝑖  is 𝐴[𝑖 ∗ 2], right child of 𝐴[𝑖] is 𝐴[𝑖 ∗ 2 + 1]
• push-down or push-up to maintain the variant
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M Main memory buffers

INPUT 1

INPUT M-1

OUTPUT

DiskDisk

INPUT 2

. . .. . .

1

4 3

8 5 9

1 4 3 8 5 9

1

2 3

4 5 6

𝐴
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General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full
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2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume 
𝑀 = 4 instead of 3 from now on.

Run 1 Run 2 Run 3
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General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full
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2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume 
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

next

2, 3

1, 3

2, 6

next_sidinput

output

1,2

2,1 2,3

Run 1 Run 2 Run 3
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General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full
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2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume 
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

next

2, 3

5, 6

2, 6

next_sid

1

input

output

2,1

2,3

Run 1 Run 2 Run 3

3,2
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General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full
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General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full
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For illustration, let’s now assume 
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

input

output

Run 1 Run 2 Run 3

9

1,2

2,3

3,4

4,5

6,6

6,7

7,8

𝑁 pages to read/write per pass

𝑙𝑜𝑔𝑀−1
𝑁

𝑀
 merge passes

Cost per merge pass: 
    2𝑁 pages read/written + 
    2𝑁 seeks
Total cost for merge passes:

    2 𝑡𝑇 + 𝑡𝑆 𝑁⌈log𝑀−1⌈
𝑁

𝑀
⌉⌉
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Cost analysis
• Cost analysis:

• Pass 0: 2𝑁𝑡𝑇 + 2
𝑁

𝑀
𝑡𝑆

• Pass 1, 2, … combined: 2 𝑡𝑇 + 𝑡𝑆 𝑁⌈log𝑀−1⌈
𝑁

𝑀
⌉⌉

• Total = 2𝑡𝑇𝑁 𝑙𝑜𝑔𝑀−1
𝑁

𝑀
+ 1 + 2𝑡𝑆

𝑁

𝑀
+ 𝑁⌈𝑙𝑜𝑔𝑀−1⌈

𝑁

𝑀
⌉⌉

• Can we do it better?
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N M=3 =5 =9 =17 =129 =257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

▪  gain of utilizing all available buffers
▪  importance of a high fan-in during merging



Batching I/Os for merge sort
• Refinement 1

• reducing random I/Os by reading/writing 𝐵 pages per run during merge
• using 𝑀 − 1 -way merge sort

• memory usage increases to 𝑀𝐵 pages
• number of pages transferred do not change

• but the number of random seeks per merge pass reduced to approximately 2⌈
𝑁

𝐵
⌉

• total cost reduced to 2𝑡𝑇𝑁 𝑙𝑜𝑔𝑀−1
𝑁

𝑀𝐵
+ 1 + 2𝑡𝑆

𝑁

𝑀𝐵
+ ⌈

𝑁

𝐵
⌉⌈𝑙𝑜𝑔𝑀−1⌈

𝑁

𝑀𝐵
⌉⌉
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MB Main memory buffers

1

input

output
2 B…

1 2 B…

1 2 B…

1 2 B…
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Exercise: what if we only have 𝑀 pages instead of 𝑀𝐵 
pages and still read/write pages in 𝐵-page batches?

2𝑡𝑇𝑁 𝑙𝑜𝑔
⌊
𝑀
𝐵

⌋−1

𝑁

𝑀
+ 1 + 2𝑡𝑆

𝑁

𝑀
+ ⌈

𝑁

𝐵
⌉⌈𝑙𝑜𝑔

⌊
𝑀
𝐵

⌋−1
⌈
𝑁

𝑀
⌉⌉

 



Pipelining output
• Refinement 2

• in most cases, do not need to write the final file
• pipelining to the next operator
• or output to user

• Hence, no need to count the write of the final pass

• total cost reduced to 𝑡𝑇𝑁 2 𝑙𝑜𝑔 𝑀

𝐵
−1

𝑁

𝑀
+ 1 + 𝑡𝑆 2

𝑁

𝑀
+ ⌈

𝑁

𝐵
⌉(2⌈𝑙𝑜𝑔 𝑀

𝐵
−1

⌈
𝑁

𝑀
⌉⌉ − 1)
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output
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1 2 B…
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Tournament sort
• Refinement 3

• producing initial runs as large as possible in pass 0

• Alternative to quick-sort: “tournament sort” (a.k.a. “heapsort”, “replacement selection”)

• Keep two heaps in memory, H1 and H2, reserve an input buffer page and an output buffer page
read M-2 pages of records, inserting into H1;

while (records left) {

m = H1.removemin();  put m in output buffer;

if (H1 is empty)

swap H1 and H2 (pointer swap only!); start new output run; 

else

read in a new record r (use 1 buffer for input pages);

if (r < m)  H2.insert(r);

else        H1.insert(r);

}

H1.output();  start new run;  H2.output();
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Tournament sort
• Tournament sort explained:
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. . .
12

4

2

8

10
3

5

CURRENT SET
INPUT

OUTPUT

• 1 input, 1 output, M - 2 for current and next set (min heaps)
• Main idea: ensure the smallest key in the current set (H1) is greater than any key that 

has been written to this output run.
• If it can’t be satisfied, write to the next set (H2), which goes into the next run.

• Memory usage of the min-heaps combined never exceeds the M-2 pages



Tournament sort
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• Fact: average length of a run is 2(M-2)

• Total cost reduced to on average

𝑡𝑇𝑁 2 𝑙𝑜𝑔 𝑀
𝐵

−1

𝑁

2𝑀 − 4
+ 1 + 𝑡𝑆 2

𝑁

2𝑀 − 4
+ ⌈

𝑁

𝐵
⌉(2⌈𝑙𝑜𝑔 𝑀

𝐵
−1

⌈
𝑁

2𝑀 − 4
⌉⌉ − 1)

• Worst-Case:
• What is min length of a run?

• How does this arise?

• Best-Case:
• What is max length of a run?

• How does this arise?

• Quicksort is faster, but … longer runs often means fewer passes!



Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on sorting column(s).

• Idea: Can retrieve records in order by traversing leaf pages.

• Is this a good idea?

• Cases to consider:
• B+ tree is clustered  Good idea since it’s already available!

• B+ tree is not clustered Could be a very bad idea! (Random I/O)
    unless all columns are included in the key
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Certain basic operator implementation w/ sorting
• Some basic operators can be implemented on top of sorting

• Can use pipelining over the sort results

• Examples
• deduplication (projection in standard RA)

• maintain the last key
• for each output from the sort

• emit it if it is different from the last key
• otherwise, discard it

• aggregation
• maintain the aggregation state
• for each output from the sort

• emit the finalized aggregation value if it is different from the last key (unless this is the first)
• otherwise, accumulate it to the state

• exercise: work out the details of ∪,∩, −

• No additional I/O due to pipelining
• can support rewinding (why?)
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This lecture
• Summary:

• Aggregation and set operators

• External sorting (multi-way merge-sort)

• Next lecture
• Join algorithms

• Reminders:
• HW4 released today, due on 4/22/2024, 23:59 PM EDT

• Project 4 due next Monday, 4/15/2024, 23:59 PM EDT
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