
CSE462/562: Database Systems (Spring 24)

Lecture 11: Join Algorithms

4/15/2024

Last updated: 5/3/2024

Reminders
• Project 4 is due today, 23:59 PM EDT

• HW5 is released today, due on 4/29, 23:59 PM EDT

CSE462/562 (Spring 2024): Lecture 11 2

Joins
• Joins are very common

• need to reconstruct complete rows due to schema normalization

• collecting correlated data (e.g., sliding window on timestamps, spatial joins, etc.)

• Joins are very expensive!
• join results can be as large as the cartesian product

• but they are usually far from the full cartesian product

• can we avoid evaluating the full cartesian product?

• Many approaches to reduce join cost
• Nested-loop join (simple/block/indexed)

• Sort-merge join

• Hash join (basic hash partitioning vs hybrid hashing)

CSE462/562 (Spring 2024): Lecture 11 3

Running example
• A quick recap on our running example

• Notations: for relation 𝑅
• 𝑇𝑅: number of records, 𝑁𝑅: number of pages in its heap file, 𝐵𝑅: (average) number of tuples per page
• ℎ𝐼: height of a B-tree index 𝐼 over the file
• 𝑀: private workspace size in pages

• Running example
• 𝑡𝑆 = 4 𝑚𝑠, 𝑡𝑇 = 0.1 𝑚𝑠, 4000-byte page
• Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

• 50 bytes/tuple, 𝐵𝑅 = 80, 𝑇𝑅 = 40,000, 𝑁𝑅 = 500
• Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

• 20 bytes/tuple, 𝐵𝐸 = 200, 𝑇𝐸 = 200,000, 𝑁𝐸 = 1000
• Consider the equi-join 𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸 (denote the join predicate 𝑅. 𝑠𝑖𝑑 = 𝐸. 𝑠𝑖𝑑 as 𝜃)

• R is called the outer relation, E is called the inner relation
• cost = #seeks × tS + #page_transfers × tT
• ignoring buffer effect; not counting the final output

CSE462/562 (Spring 2024): Lecture 11 4

Simple nested-loop join
• For each tuple in the outer relation 𝑅,

• scan the entire inner relation 𝑆

• Simple nested-loop join evaluates the full cartesian product
• only keep those pairs that satisfy the predicate

• Cost? depends on the available memory
• If 𝑀 = 3, we’ll have to read every pages in the inner relation once for every tuple in the outer relation

• number of pages to read: NR + 𝑇𝑅𝑁𝐸

• number of seeks: NR + TR (one seek for every page in R, and one seek for every scan of E)
• cost = 𝑡𝑇 𝑁𝑅 + 𝑇𝑅𝑁𝐸 + 𝑡𝑆 𝑁𝑅 + 𝑇𝑅

• running example: cost R ⋈ 𝐸 ≈ 4162 𝑠 ≈ 1.15 ℎ𝑟 !
• What about 𝑐𝑜𝑠𝑡 𝐸 ⋈ 𝑅 ?

• 𝑡𝑇 𝑁𝐸 + 𝑇𝐸𝑁𝑅 + 𝑡𝑆 𝑁𝐸 + 𝑇𝐸 ≈ 10804 𝑠 ≈ 3 ℎ𝑟

CSE462/562 (Spring 2024): Lecture 11 5

foreach tuple r in R do

 foreach tuple e in E do

 if (𝑟, 𝑒) satisfies 𝜃 then
 emit 𝑟 ∘ 𝑒 as result

𝜃: 𝑅. 𝑠𝑖𝑑 = 𝐸. 𝑠𝑖𝑑

Simple nested-loop join
• For each tuple in the outer relation 𝑅,

• scan the entire inner relation 𝐸

• Simple nested-loop join evaluates the full cartesian product
• only keep those pairs that satisfy the predicate

• Cost? depends on the available memory
• If 𝑀 = 3, cost = 𝑡𝑇 𝑁𝑅 + 𝑇𝑅𝑁𝐸 + 𝑡𝑆 𝑁𝑅 + 𝑇𝑅

• If 𝑀 ≥ 𝑁𝐸 + 2, we can cache the inner relation 𝐸 in memory

• number of pages to read: 𝑁𝑅 + 𝑁𝐸

• number of seeks: 2 (scanning E in full, followed by scan of R)

• cost = 𝑡𝑇 𝑁𝑅 + 𝑁𝐸 + 2𝑡𝑆 = 0.158 𝑠

• How to fully utilize the memory if 3 ≤ 𝑀 < 𝑁𝐸 + 2?
CSE462/562 (Spring 2024): Lecture 11 6

foreach tuple r in R do

 foreach tuple e in E do

 if (𝑟, 𝑒) satisfies 𝜃 then
 emit 𝑟 ∘ 𝑒 as result

𝜃: 𝑅. 𝑠𝑖𝑑 = 𝐸. 𝑠𝑖𝑑

Block nested-loop join
• For each block for the outer relation 𝑆 and every block of the inner relation 𝐸,

• first assume each block is a page

• emit the pairs of records 𝑟, 𝑒 that satisfy the join predicate 𝜃

• Block nested-loops only reads each page in the outer relation once
• Cost = 𝑡𝑇 𝑁𝑅 + 𝑁𝑅𝑁𝐸 + 2𝑡𝑆𝑁𝑅 = 54.5 𝑠 (block nested-loop) vs 1.15 hr (simple nested loop)

• What about 𝐸 ⋈ 𝑆?

• cost = 58.1 s -- use smaller relation as the outer relation

CSE462/562 (Spring 2024): Lecture 11 7

𝜃: 𝑅. 𝑠𝑖𝑑 = 𝐸. 𝑠𝑖𝑑

foreach block 𝐵𝑅 in R do

 foreach block 𝐵𝐸 in E do

 foreach tuple r in 𝐵𝑅 do

 foreach tuple e in 𝐵𝐸 do

 if (𝑟, 𝑒) satisfies 𝜃 then
 emit 𝑟 ∘ 𝑒 as result

Block nested-loop join
• For each block for the outer relation 𝑆 and every block of the inner relation 𝐸,

• first assume each block is a page

• emit the pairs of records 𝑟, 𝑒 that satisfy the join predicate 𝜃

• Block nested-loops only reads each page in the outer relation once
• Cost = 𝑡𝑇 𝑁𝑅 + 𝑁𝑅𝑁𝐸 + 2𝑡𝑆𝑁𝑅 = 54.5 𝑠 (block nested-loop) vs 1.15 hr (simple nested loop)

• Only uses 3 buffer frames. What about M > 3 buffer frames?

• Read every 𝑀 − 2 pages at a time for the outer relation, i.e., 𝐵𝑆 = 𝑀 − 2

• cost = 𝑡𝑇 𝑁𝑅 +
𝑁𝑅

𝑀−2
𝑁𝐸 + 2𝑡𝑆

𝑁𝑅

𝑀−2

• 𝑀 = 12 => cost = 5.45 𝑠, 𝑀 = 102 => cost = 0.59 𝑠

• caveat: CPU cost may not be negligible when I/O cost is low for NL/BNL
CSE462/562 (Spring 2024): Lecture 11 8

𝜃: 𝑅. 𝑠𝑖𝑑 = 𝐸. 𝑠𝑖𝑑

foreach block 𝐵𝑅 in R do

 foreach block 𝐵𝐸 in E do

 foreach tuple r in 𝐵𝑅 do

 foreach tuple e in 𝐵𝐸 do

 if (𝑟, 𝑒) satisfies 𝜃 then
 emit 𝑟 ∘ 𝑒 as result

Index nested-loop join
• If there’s an index over the inner relation’s join attribute (e.g., 𝐸. 𝑠𝑖𝑑)

• only fetch records with matching values in the join attribute using the index

• Assuming heap scan over the outer relation 𝑅 and block size 𝐵𝑅 = 1

• cost =𝑁𝑅 𝑡𝑆 + 𝑡𝑇 + 𝑇𝑅 × 𝑐

• where 𝑐 is the average time for scanning all the matching record for a tuple 𝑟 ∈ 𝑅

• 𝑐 depends on

• selectivity s𝐸 or join degree 𝑑 = 𝑠𝐸𝑇𝐸

• special case foreign-key join: d = 1 or 𝑠𝐸 = 1/𝑇𝐸

• clustered vs unclustered index

• data entry alternatives

CSE462/562 (Spring 2024): Lecture 11 9

𝜃: 𝑅. 𝑠𝑖𝑑 = 𝐸. 𝑠𝑖𝑑

foreach block 𝐵𝑅 in R do

 foreach tuple r in 𝐵𝑅 do

 foreach tuple e in 𝐸 s.t. 𝑅. 𝑠𝑖𝑑 = 𝐸. 𝑠𝑖𝑑 do
 emit 𝑟 ∘ 𝑒 as result

Index nested-loop join
• 𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

• BNL cost = 54.5 𝑠

• Example 1: 𝐸 as inner, B-Tree index over 𝐸 𝑠𝑖𝑑 , alternative 2, clustered, height ℎ = 3

• assuming uniformity, average join degree 𝑑 =
𝑇𝐸

𝑇𝑅
= 5

• for each inner table scan, ℎ random I/Os for tree search, 1 seek and
𝑑

𝐵𝐸
= 1 heap pages read

• 𝑐 = ℎ 𝑡𝑆 + 𝑡𝑇 + 𝑡𝑆 +
𝑑

𝐵𝐸
𝑡𝑇 = 16.1 𝑚𝑠

• total = 𝑁𝑅 𝑡𝑆 + 𝑡𝑇 + 𝑇𝑅 × 𝑐 = 646.05 𝑠

• Example 2: 𝐸 as inner, B-Tree index over 𝐸 𝑠𝑖𝑑 , alternative 2, unclustered, height ℎ = 3
• still 𝑑 = 5

• for each inner table scan, ℎ random I/Os for tree search, 5 random I/Os for reading 5 heap records

• 𝑐 = ℎ 𝑡𝑆 + 𝑡𝑇 + 𝑑 𝑡𝑆 + 𝑡𝑇 = 32.8 𝑚𝑠

• total = 𝑁𝑅 𝑡𝑆 + 𝑡𝑇 + 𝑇𝑅 × 𝑐 = 1314.05 s

CSE462/562 (Spring 2024): Lecture 11 10

𝜃: 𝑅. 𝑠𝑖𝑑 = 𝐸. 𝑠𝑖𝑑

Index nested-loop join
• Now consider 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸, assuming selectivity of 𝑎𝑑𝑚_𝑦𝑒𝑎𝑟 = 2021 is 𝑠 = 0.001

• suppose we have an unclustered B-Tree index over R(𝑎𝑑𝑚_𝑦𝑒𝑎𝑟), ℎ1 = 2

• can use the index to find all the 𝑠𝑇𝑅 = 40 records

• Using nested loop for join, need to scan the inner for every 𝑠 ∈ 𝜎𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021

• cost = ℎ1 + 𝑠𝑇𝑅 𝑡𝑆 + 𝑡𝑇 + 𝑠𝑇𝑅 𝑡𝑆 + 𝑡𝑇𝑁𝐸 ≈ 4.33 𝑠

• Example 3: 𝐸 as inner, B-Tree index over 𝐸 𝑠𝑖𝑑 , alternative 2, clustered, height ℎ = 3, d = 5

• for each inner table scan, ℎ random I/Os for tree search, 1 seek and
𝑑

𝐵𝐸
= 1 heap pages read

• 𝑐 = ℎ 𝑡𝑆 + 𝑡𝑇 + 𝑡𝑆 +
𝑑

𝐵𝐸
𝑡𝑇 = 16.1 𝑚𝑠

• total = ℎ1 + 𝑠𝑇𝑅 𝑡𝑆 + 𝑡𝑇 + 𝑠𝑇𝑅 × 𝑐 ≈ 0.82𝑠

• Example 4: 𝐸 as inner, B-Tree index over 𝐸 𝑠𝑖𝑑 , alternative 2, unclustered, height ℎ = 3, d = 5

• for each inner table scan, ℎ random I/Os for tree search, 5 random I/Os for reading 5 heap records

• 𝑐 = ℎ 𝑡𝑆 + 𝑡𝑇 + 𝑑 𝑡𝑆 + 𝑡𝑇 = 32.8 𝑚𝑠

• total = ℎ + 𝑠𝑇𝑅 𝑡𝑆 + 𝑡𝑇 + 𝑠𝑇𝑅 × 𝑐 ≈ 1.48 𝑠

CSE462/562 (Spring 2024): Lecture 11 11

𝜃: 𝑅. 𝑠𝑖𝑑 = 𝐸. 𝑠𝑖𝑑

Sort-merge join
• Idea: sort 𝑅 on 𝑅. 𝑠𝑖𝑑 and sort 𝐸 on 𝐸. 𝑠𝑖𝑑

“merge” them and emit the pairs with matching values on the join colunms

• Useful if
• One or both relations are already sorted on the join attributes

• If not, sort them using external sorting algorithms – this may still be cheaper than BNL
• Output should be sorted on the join attributes

• e.g., SELECT * from R, E WHERE R.sid = E.sid ORDER BY R.sid

• Algorithm sketch:
• Naïve version:

CSE462/562 (Spring 2024): Lecture 11 12

pr = address of first tuple in R

pe = address of first tuple in E

done = false

while (not done && pe != end && pr != end) do

 if (pe->sid != pr->sid)

 if pe->sid < pr->sid then ++pe else ++pr

 continue

 pr2 = first address after pr such that pr2 == end || pr2->sid != pr->sid

 pe2 = first address after pe such that pe2 == end || pe2->sid != pe->sid

 emit all pairs between [pr, pr2) and [pe, pe2)

 pe = pe2; pr = pr2;

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

Sort-merge join
• Sort-merge join: naïve version

• Problem?

CSE462/562 (Spring 2024): Lecture 11 13

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

student R
sid semester cno grade

100 s22 562 2.0

100 f21 560 3.7

101 s21 560 3.3

101 f21 560 3.3

102 s22 562 2.3

102 f21 560 4.0

103 s22 460 2.7

103 f21 250 4.0

enrollment E

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

ps
pe

ps2 pe2

Sort-merge join
• Sort-merge join: naïve version

• Problem? each matched group is scanned for an additional pass (for identifying ps, ps2, pe, pe2)

CSE462/562 (Spring 2024): Lecture 11 14

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

student R
sid semester cno grade

100 s22 562 2.0

100 f21 560 3.7

101 s21 560 3.3

101 f21 560 3.3

102 s22 562 2.3

102 f21 560 4.0

103 s22 460 2.7

103 f21 250 4.0

enrollment E

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

ps
pe

ps2

pe2

Sort-merge join
• Idea: sort 𝑅 on 𝑅. 𝑠𝑖𝑑 and sort 𝐸 on 𝐸. 𝑠𝑖𝑑

“merge” them and emit the pairs with matching values on the join colunms

• Algorithm sketch:
• How to ensure R is scanned once, each S group is scanned once per matching 𝑟 ∈ 𝑅?

CSE462/562 (Spring 2024): Lecture 11 15

pr = address of first tuple in R

pe = address of first tuple in E

done = false

while (not done && pe != end && pr != end) do

 if (*pe != *pr)

 if *pe < *pr then ++pe else ++pr

 continue

 key = pr->sid

 pe0 = pe

 while pr != end && pr->sid == key

 pe = pe0

 while pe != end && pe->sid == key

 emit *pr ∘ *pe; ++pe
 pe2 = pe; ++pr

 pe = pe2

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

A few caveats in actual implementation:
1. Need to restructure the algorithm to fit into

volcano model (project 5)
2. rewinding (setting to a previously saved pointer)

on iterator may be expensive!
3. handling NULLs (NULLs never compare equal)

Sort-merge join

• Cost analysis: sorting cost + merge cost, let 𝑀 = 110, 𝐵 = 10,
𝑀

𝐵
= 11

• Sorting cost: 2𝑡𝑇𝑁𝑅 𝑙𝑜𝑔 𝑀

𝐵
 −1

𝑁𝑅

𝑀
+ 1 + 2𝑡𝑆

𝑁𝑅

𝑀
+ ⌈

𝑁𝑅

𝐵
⌉⌈𝑙𝑜𝑔 𝑀

𝐵
−1

⌈
𝑁𝑅

𝑀
⌉⌉ +

2𝑡𝑇𝑁𝐸 𝑙𝑜𝑔 𝑀
𝐵 −1

𝑁𝐸

𝑀
+ 1 + 2𝑡𝑆

𝑁𝐸

𝑀
+ ⌈

𝑁𝐸

𝐵
⌉⌈𝑙𝑜𝑔 𝑀

𝐵 −1
⌈
𝑁𝐸

𝑀
⌉⌉

• includes the cost of writing the sort results to two temporary files

• running example: sorting cost = 0.64 + 1.28 𝑠 = 1.92 𝑠

• Merge cost: two scans over the temporary files

• number of pages read: 𝑁𝑅 + 𝑁𝐸 = 1500 (assuming all 5 matching tuples of 𝑆 are on the same page)

• This could be up to 𝑁𝑅 + 𝑁𝑅𝑁𝐸 in extreme case (why?)

• number of seeks? (depending on the block size)

• If we fetch one page from R and 𝐸 at a time, then 𝑁𝑅 + 𝑁𝐸 = 1500

• If we fetch b =
𝑀

2
− 1 = 54 pages at a time for both, then

𝑁𝑅

𝑏
+

𝑁𝐸

𝑏
= 10 + 19 = 29

• running example: cost = 6 𝑠 (one page at a time) or 0.112 𝑠 (54 pages at a time)

• Total cost: ≈ 7.92 𝑠 (one page at a time) or 2.03 𝑠 (54 pages at a time)
CSE462/562 (Spring 2024): Lecture 11 16

Sort-merge join
• In practice, the cost of sort-merge join for an equi-join is usually linear to the relation sizes

• assuming we have a large enough buffer for sorting everything in two passes

• can even combine the merge phase of external sorting with the merge phase in sort-merge join (i.e., pipelining)

• Question: how large the tables can be in order to complete the sort-merge join in two passes? (minimal
needed for sort-merge joins)
• For simplicity, let B = 1

• Let 𝑁 = max 𝑁𝑅, 𝑁𝐸 , we need log𝑀−1
𝑁

𝑀
≤ 1 => roughly 𝑁 ≤ 𝑀2 − 𝑀

• In other words, to perform a sort-merge join in two passes

• the buffer size 𝑀 ≥ 0.5 + 𝑁 + 0.25 = 𝑂 𝑁

• good enough to use 𝑁 + c for some small constant c in practice

• Exercise: B > 1?

CSE462/562 (Spring 2024): Lecture 11 17

Hash join
• Idea: build a hash table on outer relation 𝑅 over its join attribute

• Scan the outer relation and probe the hash table

• However, the hash table might be too large to fit in memory.

• Extendible hashing/linear hashing have overhead for dynamic updates

• not suitable for QP purpose

• Solution: partitioning using a hash function ℎ𝑝

CSE462/562 (Spring 2024): Lecture 11 18

Build a hash table over 𝑅 with hash function ℎ𝑟

foreach tuple 𝑒 in E do
 probe the hash table for all the matching r in R

 and emit the join results

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

Hash join
• Two phases

• Partitioning
• Partitioning both outer 𝑅

and inner 𝐸 using the same
hash function ℎ𝑝

• Rehashing and probing
• load a partition for the

outer 𝑅, rehash using a
different hash function ℎ𝑟
and build a hash table

• scan the partition of the
outer 𝐸 with the same hash
value for ℎ𝑝 and probe the
in-memory hash table

CSE462/562 (Spring 2024): Lecture 11 19

Outer R
Hash table for partition

Ri (|Ri|<= M-2 pages)

M main memory buffersDisk

hash
fn
hr

M main memory buffers DiskDisk

Relation(s) OUTPUT

2INPUT

1

hash
function

hp M-1

Partitions

1

2

M-1

. . .

Inner E

Disk

scan and

probe

using 𝒉𝒓

1

2

M-1

1

2

M-1

INPUTOUTPUT

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

Hash join
• What if a partition won’t fit into memory in the rehashing phase?

• Recursive partitioning!
• In the rehash and probe phase, if both partitions with the same hash value are larger than 𝑀 − 2

• recursively partition them as if they were the original relations to be joined
• use a different partitioning hash function ℎ𝑝

′

• Assuming there’s no recursive partitioning
• Cost of partitioning on R and E: 2𝑡𝑇𝑁𝑅 + 2𝑡𝑆𝑁𝑅 + 2𝑡𝑇𝑁𝐸 + 2𝑡𝑆𝑁𝐸

• can also use larger blocks 𝐵 to reduce the number of seeks to
2𝑁𝑅

𝐵
+

2𝑁𝐸

𝐵

• Cost of rehashing and probing: 𝑡𝑇𝑁𝑅 + 𝑡𝑇𝑁𝐸 + 2𝑡𝑆
𝑀

𝐵
− 1 => linear to relation sizes

• total cost is roughly the cost of scanning both relations for three times
• running example: 𝑀 = 100, 𝐵 = 10 => cost ≈ 1.72 𝑠;

• 𝑀 = 1000, 𝐵 = 10 ⇒ 𝑐𝑜𝑠𝑡 ≈ 13.2𝑠 (!)

• How big the outer table can be such that we can finish join in two passes (one partitioning pass)? assuming B = 1
• M - 1 partitions in Phase 1
• Each should be no more than M-2 page large
• Answer: (M-2)(M-1) – assuming uniformity among the keys

• i.e., we can do hash join in one pass in about 𝑂 𝑁𝑅 space

• Much like sorting, but only dependent on the outer relation size (usually the smaller one)

• Do need to use 𝑐 𝑁𝑅 in practice in case of key skews
• Exercise: B > 1?

CSE462/562 (Spring 2024): Lecture 11 20

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

Hybrid Hashing
• Can we do it better when both relations fit in memory?

• In-memory hash join can finish in 1 scan instead of 3!

• Hybrid hashing
• Idea: keep a small 1st partition (of size k) in memory in the partitioning phase

• directly scan and probe the keys in the 1st partition after partitioning of the inner relation finishes

CSE462/562 (Spring 2024): Lecture 11 21

1

M main memory buffers DiskDisk

Original

Relation OUTPUT

3

INPUT

2

hh M-k

Partitions

2

3

M-k

. . .
hr

k-buffer hashtable

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

Hybrid hashing
• Assume we have the hash-partition function ℎ𝑝: 𝑋 → [𝑀 − 𝑘 − 1] (𝑋 is the domain of the key, i.e., the join column)

• Define ℎℎ as follows: (technically, it is determined by the sequence of the keys)
• ℎℎ(𝑥) = 1 if in-memory hash table is not yet full
• ℎℎ 𝑥 = 1 if x is already in the hash table
• ℎℎ 𝑥 = ℎ𝑝 𝑥 + 1 otherwise

• This ensures that:
• Bucket 1 fits in k pages of memory
• If the entire set of distinct hash table entries is smaller than k, there is not spilling!

• During partitioning of the outer 𝑅
• If hh 𝑟. 𝑠𝑖𝑑 = 1

• insert r into in-mem hash table
• Otherwise,

• write 𝑟 to its partition

• During partitioning of inner E
• If hh 𝑒. 𝑠𝑖𝑑 = 1

• probe in-mem hash table
• Otherwise,

• write e to its partition

• Only enter the rehashing and
probing phase if there is any spill

CSE462/562 (Spring 2024): Lecture 11 22

1

M main memory buffers DiskDisk

Original

Relation OUTPUT

3

INPUT

2

hh M-k

Partitions

2

3

M-k

. . .
hr

k-buffer hashtable

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

Hybrid hashing
• Assume we have the hash-partition function ℎ𝑝: 𝑋 → [𝑀 − 𝑘 − 1] (𝑋 is the domain of the key, i.e., the join column)

• Define ℎℎ as follows: (technically, it is determined by the sequence of the keys)

• ℎℎ(𝑥) = 1 if in-memory hash table is not yet full

• ℎℎ 𝑥 = 1 if x is already in the hash table

• ℎℎ 𝑥 = ℎ𝑝 𝑥 + 1 otherwise

• This ensures that:

• Bucket 1 fits in k pages of memory

• If the entire set of distinct hash table entries is smaller than k, there is not spilling!

• Running example
• M = 1000, 𝑘 = 900

• Cost = 2𝑡𝑆 + 𝑡𝑇 𝑁𝑅 + 𝑁𝐸 ≈ 0.15𝑠

CSE462/562 (Spring 2024): Lecture 11 23

1

M main memory buffers DiskDisk

Original

Relation OUTPUT

3

INPUT

2

hh M-k

Partitions

2

3

M-k

. . .
hr

k-buffer hashtable

𝑅 ⋈𝑅.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

Hashing for single-table ops
• Recursive hashing and hybrid hashing can also be applied to aggregation and

deduplication operators
• Instead of rehashing and probing

• We only rehash each partition and maintain aggregates/distinct values

• Cost analysis is similar to hash joins

CSE462/562 (Spring 2024): Lecture 11 24

Summary
• This lecture

• Join algorithms

• Nested loop (simple/block/index)

• Sort-merge join

• Hash join

• Next lecture
• Query optimization

• Reminders
• Project 4 is due today, 23:59 PM EDT

• HW5 is released today, due on 4/29, 23:59 PM EDT

CSE462/562 (Spring 2024): Lecture 11 25

	Slide 1: CSE462/562: Database Systems (Spring 24)
	Slide 2: Reminders
	Slide 3: Joins
	Slide 4: Running example
	Slide 5: Simple nested-loop join
	Slide 6: Simple nested-loop join
	Slide 7: Block nested-loop join
	Slide 8: Block nested-loop join
	Slide 9: Index nested-loop join
	Slide 10: Index nested-loop join
	Slide 11: Index nested-loop join
	Slide 12: Sort-merge join
	Slide 13: Sort-merge join
	Slide 14: Sort-merge join
	Slide 15: Sort-merge join
	Slide 16: Sort-merge join
	Slide 17: Sort-merge join
	Slide 18: Hash join
	Slide 19: Hash join
	Slide 20: Hash join
	Slide 21: Hybrid Hashing
	Slide 22: Hybrid hashing
	Slide 23: Hybrid hashing
	Slide 24: Hashing for single-table ops
	Slide 25: Summary

