
BzTree: A High-Performance Latch-free Range Index for
Non-Volatile Memory

Joy Arulraj1
∗

Justin Levandoski2 Umar Farooq Minhas3 Per-Ake Larson4

1Carnegie Mellon University, 2,3Microsoft Research, 4University of Waterloo
1jarulraj@cs.cmu.edu, 2justin.levandoski@microsoft.com,3ufminhas@microsoft.com, 4plarson@uwaterloo.ca

ABSTRACT
Storing a database (rows and indexes) entirely in non-volatile mem-
ory (NVM) potentially enables both high performance and fast
recovery. To fully exploit parallelism on modern CPUs, modern
main-memory databases use latch-free (lock-free) index structures,
e.g. Bw-tree or skip lists. To achieve high performance NVM-
resident indexes also need to be latch-free. This paper describes the
design of the BzTree, a latch-free B-tree index designed for NVM.
The BzTree uses a persistent multi-word compare-and-swap oper-
ation (PMwCAS) as a core building block, enabling an index design
that has several important advantages compared with competing
index structures such as the Bw-tree. First, the BzTree is latch-free
yet simple to implement. Second, the BzTree is fast - showing
up to 2x higher throughput than the Bw-tree in our experiments.
Third, the BzTree does not require any special-purpose recovery
code. Recovery is near-instantaneous and only involves rolling back
(or forward) any PMwCAS operations that were in-flight during failure.
Our end-to-end recovery experiments of BzTree report an average
recovery time of 145 µs. Finally, the same BzTree implementation
runs seamlessly on both volatile RAM and NVM, which greatly
reduces the cost of code maintenance.

PVLDB Reference Format:
Joy Arulraj, Justin Levandoski, Umar Farooq Minhas,Per-Ake Larson. BzTree:
A High-Performance Latch-free Range Index for Non-Volatile Memory.
PVLDB, 11(5): 553 - 565, 2018.
DOI: https://doi.org/10.1145/3164135.3164147

1 Introduction
Multi-threaded concurrency is one of the keys to unlocking high
performance in main-memory databases. To achieve concurrency
on modern CPUs, several systems – both research and commercial –
implement latch-free index structures to avoid bottlenecks inherent
in latching (locking) protocols. For instance, MemSQL uses latch-
free skip-lists [30], while Microsoft’s Hekaton main-memory OLTP
engine uses the Bw-tree [6], a latch-free B+Tree.

∗Work performed while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 5
Copyright 2018 VLDB Endowment 2150-8097/18/01... $ 10.00.
DOI: https://doi.org/10.1145/3164135.3164147

The algorithms for latch-free index designs are often complex.
They rely on atomic CPU hardware primitives such as compare-and-
swap (CAS) to atomically modify index state. These atomic instruc-
tions are limited to a single word, and non-trivial data structures –
such as a latch-free B+Tree – usually require multi-word updates,
e.g., to handle operations like node splits and merges. These oper-
ations have to be broken up into multiple steps, thereby exposing
intermediate states to other threads. As a result, the algorithms must
handle subtle race conditions that may occur when intermediate
states are exposed. In addition, some designs sacrifice performance
to achieve latch-freedom. An example is the Bw-tree [22] that uses
a mapping table to map logical page identifiers to physical pointers.
Nodes in the Bw-tree store logical pointers and must dereference
the mapping table on each node access during traversal of the index.
Such indirection leads to degraded performance on modern CPUs.

Storing a main-memory database on byte-addressable non-
volatile memory (NVM) further complicates implementation of
latch-free indexes. NVM devices are becoming available in the form
of NVDIMM [27, 35], Intel 3D XPoint [5], and STT-MRAM [14].
NVM provides close-to-DRAM performance and can be accessed
by normal load and store instructions. Storing both records and
indexes in NVM enables almost instant recovery, requiring only
a small amount of work before the database is online and active.
Several systems have taken this approach [3, 29, 34, 38], and is also
the architecture we assume in this paper.

The added complexity in implementing latch-free indexes in
NVM is mainly caused by the fact that CAS and other atomic hard-
ware instructions do not persist their updates to NVM automatically
and atomically. An update only modifies the target word in the
processor cache and does not automatically update the target word
in NVM. In case of a power failure, the volatile cache content is lost
and the data in NVM may be left in an inconsistent state. Hence,
we need a persistence protocol to ensure that an index or other data
structure recovers correctly after a system crash.

In this paper, we propose the BzTree, a high-performance latch-
free B+Tree design for main-memory databases that has the follow-
ing benefits.

Reduced complexity. The BzTree implementation makes use
of PMwCAS: a high-performance, multi-word, compare-and-swap
operation that also provides persistence guarantees when used on
NVM [37]. The PMwCAS operation is implemented in software and
require no special hardware support other than a CAS (or equivalent)
instruction. It is itself latch-free and either atomically installs all
new values or fails the operation without exposing intermediate state.
Using PMwCAS to build a latch-free index has two major advantages.
First, the PMwCAS guarantees that all multi-word updates are atomic,
thus avoiding the need to handle complex race conditions that re-
sult from exposing intermediate state during multi-word operations.

553

Second, PMwCAS allows the BzTree to avoid logical-to-physical indi-
rection used, for example, in the Bw-tree [22]. The BzTree stores
direct memory pointers in both index and leaf nodes.

High performance. Using the YCSB workload on volatile RAM,
we show that the BzTree outperforms the Bw-tree. This demon-
strates that the BzTree outperforms a state-of-the-art index designed
for DRAM-based systems. Given its portability, we also experimen-
tally demonstrate that the penalty for running the BzTree on NVM
is low: on realistic workloads, the overhead of persistence is 8%
on average. We also show that use of PMwCAS exhibits negligible
contention even for larger multi-word operations. Even for highly
skewed YCSB access patterns, the failure rate for updating multiple
words across multiple BzTree nodes is only 0.2% on average.

Seamless portability to NVM. The same BzTree implementa-
tion can run on both volatile DRAM and on NVM without any code
changes. PMwCAS guarantees that upon success of an update (in this
case to B+Tree nodes), the operation will be durable on NVM and
persist across failures. Remarkably, recovery is handled entirely by
the PMwCAS library without any BzTree specific recovery code.

The rest of this paper is organized as follows. In Sections 2 and 3,
we present the necessary background on the BzTree along with an
overview of its architecture. Section 4 presents the BzTree node
layout and single-node updates, while Section 5 covers structure
modifications. Durability and recoverability on NVM are covered
in Section 6. We present our experimental evaluation in Section 7,
while Section 8 covers related work. Finally, we conclude the paper
in Section 9.

2 Background and Overview
2.1 System Model and NVM
We assume a system model with a single-level store where NVM is
attached directly to the memory bus. This model was also adopted
by several recent NVM based systems [3, 28, 34, 36, 38]. We
assume that indexes and base data reside in NVM. The system may
also contain DRAM which is used as working storage.

NVM devices, such as NVDIMM products [35, 27] behave like
DRAM but data stored on these devices is persistent and survives
across power failures. Unlike hard disk drives (HDDs) or solid
state drives (SSDs), data in NVM is accessible through normal load
and store instructions. NVDIMMs are DRAM whose data content
is saved to flash storage on power failure, so their performance
characteristics are equivalent to that of DRAM. At the time of this
writing, Intel’s 3D XPoint DIMMs are not yet available but they are
expected to have larger capacity than DRAM DIMMs, somewhat
higher read latency, and lower bandwidth [10, 5]. NVDIMMs
based on STT-MRAM technology are already available [7]; their
performance is on par with DRAM but their capacity is very low.

When an application issues a store to a location on NVM, the
store lands in the volatile CPU caches. To ensure the durability of
the store, we must flush it from the CPU caches using a Cache Line
Write Back (CLWB) or Cache Line FLUSH instruction (CLFLUSH) on
Intel processors [15]. Both instructions flush the target cache line to
memory but CLFLUSH also evicts the cache line.

2.2 Latch-Free Memory Safety
Latch-free data structure implementations require a mechanism to
manage memory lifetime and garbage collection; since there are no
locks protecting memory deallocation, the system must ensure no
thread can dereference a block of memory before it is freed. The
BzTree uses a high-performance epoch-based recycling scheme [23].
A thread joins the current epoch before each operation it performs on
the index to protect the memory it accesses from reclamation. It exits
the epoch when it finishes its operation. When all the threads that

3 SUB-OPERATIONS

UNDECIDED

PMWCAS SIZE

PMWCAS STATUS

FREE ONE

NONE

FREE ONE

MEMORY
RECYCLING
POLICY

1

1

DIRTY
BIT

0ADDRESS—1

POINTER RPOINTER Q

POINTER YADDRESS—2

TARGET
WORD’S
ADDRESS

VALUE O

POINTER X

NEW
VALUE

VALUE N

EXPECTED
OLD VALUE

ADDRESS—3

Figure 1: PMwCAS Descriptor Table – Contents of the descriptor table used
by threads to share information about the PMwCAS operation.

joined an epoch E have completed and exited, the garbage collector
reclaims the memory occupied by the descriptors deallocated in E .
This ensures that no thread can possibly dereference a pointer after
its memory is reclaimed.

2.3 Persistent Multi-Word CAS
The BzTree relies on an efficient and persistent multi-word compare-
and-swap operation, named PMwCAS, to update state in a latch-free
and persistent manner. The design is based on a volatile version
by Harris et al [11], which we enhance to guarantee persistence
on NVM (details in [37]). The approach uses a descriptor to track
metadata for the operation (details described later); these descriptors
are pooled and eventually reused. The API for the PMwCAS is:

• AllocateDescriptor(callback = default): Allocate a
descriptor that will be used throughout the PMwCAS operation.
The user can provide a custom callback function for recycling
memory pointed to by the words in the PMwCAS operation.
• Descriptor::AddWord(address, expected, desired): Spec-

ify a word to be modified. The caller provides the address of
the word, the expected value and the desired value.
• Descriptor::ReserveEntry(addr, expected, policy):

Similar to AddWord except the new value is left unspecified;
returns a pointer to the new_value field so it can be filled in
later. Memory referenced by old_value/new_value will be
recycled according to the specified policy.
• Descriptor::RemoveWord(address): Remove the word pre-

viously specified as part of the PMwCAS.
• PMwCAS(descriptor): Execute the PMwCAS and return true if

succeeded.
• Discard(descriptor): Cancel the PMwCAS (only valid before

calling PMwCAS). No specified word will be modified.

The API is identical for both volatile and persistent MWCAS. Under
the hood, PMwCAS provides all the needed persistence guarantees,
without additional actions by the application.

To use PMwCAS, the application first allocates a descriptor and
invokes the AddWord or ReserveEntry method once for each word
to be modified. It can use RemoveWord to remove a previously
specified word if needed. AddWord and ReserveEntry ensure that
target addresses are unique and return an error if they are not. Calling
PMwCAS executes the operation, while Discard aborts it. A failed
PMwCAS will leave all target words unchanged. This behavior is
guaranteed across a power failure when operating on NVM.

2.3.1 Durability
When running on NVM, the PMwCAS provides durability guaran-
tees through the use of instructions to selectively flush or write
back a cache line, e.g., via the cache line write-back (CLWB) or
cache line flush (CLFLUSH without write-back) instructions on Intel
processors [16]. These instructions are carefully placed to ensure
linearizable reads and writes and also guarantee correct recovery in
case of a crash or power failure. This is achieved by using a single

554

dirty bit on all modified words that are observable by other threads
during the PMwCAS. For example, each modification that installs a
descriptor address (or target value) sets a dirty bit to signify that the
value is volatile, and that a reader must flush the value and unset
the bit before proceeding. This protocol ensures that any dependent
writes are guaranteed that the value read will survive power failure.

2.3.2 Execution
Internally, PMwCAS makes use of a descriptor that stores all the
information needed to complete the operation. Figure 1 depicts an
example descriptor for three target words. A descriptor contains,
for each target word, (1) the target word’s address, (2) the expected
value to compare against, (3) the new value, (4) the dirty bit, and
(5) a memory recycling policy. The policy field indicates whether the
new and old values are pointers to memory objects and, if so, which
objects are to be freed on the successful completion (or failure) of
the operation. The descriptor also contains a status word tracking
the operation’s progress. The PMwCAS operation itself is latch-free;
the descriptor contains enough information for any thread to help
complete (or roll back) the operation. The operation consists of two
phases.

Phase 1. This phase attempts to install a pointer to the descriptor
in each target address using a double-compare single-swap (RDCSS)
operation [11]. RDCSS applies change to a target word only if the
values of two words (including the one being changed) match their
specified expected values. That is, RDCSS requires an additional
“expected” value to compare against (but not modify) compared
to a regular CAS. RDCSS is necessary to guard against subtle race
conditions and maintain a linearizable sequence of operations on
the same word. Specifically, we must guard against the installation
of a descriptor for a completed PMwCAS (p1) that might inadvertently
overwrite the result of another PMwCAS (p2), where p2 should occur
after p1 (details in [37]).

A descriptor pointer in a word indicates that a PMwCAS is under-
way. Any thread that encounters a descriptor pointer helps complete
the operation before proceeding with its own work, making PMwCAS
cooperative (typical for latch-free operations). We use one high
order bit (in addition to the dirty bit) in the target word to signify
whether it is a descriptor or regular value. Descriptor pointer instal-
lation proceeds in a target address order to avoid deadlocks between
two competing PMwCAS operations that might concurrently overlap.

Upon completing Phase 1, a thread persists the target words whose
dirty bit is set. To ensure correct recovery, this must be done before
updating the descriptor’s status field and advancing to Phase 2.
We update status using CAS to either Succeeded or Failed (with
the dirty bit set) depending on whether Phase 1 succeeded. We
then persist the status field and clear its dirty bit. Persisting the
status field “commits” the operation, ensuring its effects survive
even across power failures.

Phase 2. If Phase 1 succeeds, the PMwCAS is guaranteed to suc-
ceed, even if a failure occurs – recovery will roll forward with the
new values recorded in the descriptor. Phase 2 installs the final
values (with the dirty bit set) in the target words, replacing the
pointers to the descriptor. Since the final values are installed one by
one, it is possible that a crash in the middle of Phase 2 leaves some
target fields with new values, while others point to the descriptor.
Another thread might have observed some of the newly installed
values and make dependent actions (e.g., performing a PMwCAS of its
own) based on the read. Rolling back in this case might cause data
inconsistencies. Therefore, it is crucial to persist status before en-
tering Phase 2. The recovery routine (covered next) can then rely on
the status field of the descriptor to decide if it should roll forward
or backward. If the PMwCAS fails in Phase 1, Phase 2 becomes a

rollback procedure by installing the old values (with the dirty bit
set) in all target words containing a descriptor pointer.

Recovery. Due to the two-phase execution of PMwCAS, a target
address may contain a descriptor pointer or normal value after a
crash. Correct recovery requires that the descriptor be persisted
before entering Phase 1. The dirty bit in the status field is cleared
because the caller has not started to install descriptor pointers in the
target fields; any failure that might occur before this point does not
affect data consistency upon recovery.

The PMwCAS descriptors are pooled in a memory location known
to recovery. Crash recovery then proceeds by scanning the descriptor
pool. If a descriptor’s status field signifies success, the operation is
rolled forward by applying the target values in the descriptor; if the
status signifies failure it is rolled back by applying the old values.
Uninitialized descriptors are simply ignored. Therefore, recovery
time is determined by the number of in-progress PMwCAS operations
during the crash; this is usually on the order of number of threads,
meaning very fast recovery. In fact, in an end-to-end recovery
experiment for the BzTree, we measured an average recovery time
of 145 µs when running a write-intensive workload with 48 threads.

Memory management. Since the PMwCAS is latch-free, descrip-
tor memory lifetime is managed by the epoch-based recycling
scheme described in Section 2.2. This ensures that no thread can pos-
sibly dereference a descriptor pointer after its memory is reclaimed
and reused by another PMwCAS. If any of the 8-byte expected or tar-
get values are pointers to larger memory objects, these objects can
also be managed by the same memory reclamation scheme. Each
word in the descriptor is marked with a memory recycling policy
that denotes whether and what memory to free on completion of
the operation. For instance, if a PMwCAS succeeds, the user may
want memory behind the expected (old) value to be freed once the
descriptor is deemed safe to recycle. Section 6 discusses the details
of the interplay between PMwCAS and memory reclamation.

3 BzTree Architecture and Design
3.1 Architecture
The BzTree is a high-performance main-memory B+Tree. Internal
nodes store search keys and pointers to child nodes. Leaf nodes
store keys and either record pointers or actual payload values. Keys
can be variable or fixed length. Our experiments assume leaf nodes
store 8-byte record pointers as payloads (common in main-memory
databases [6]), though we also discuss how to handle full variable-
length payloads. The BzTree is a range access method that supports
standard atomic key-value operations (insert, read, update, delete,
range scan). Typical of most access methods, it can be deployed as
a stand-alone key-value store, or embedded in a database engine to
support ACID transactions, where concurrency control takes place
outside of the access method as is common in most systems (e.g.,
within a lock manager) [12, 23].

Persistence Modes. A salient feature of the BzTree is that its
design works for both volatile and persistent environments. In
volatile mode, BzTree nodes are stored in volatile DRAM. Content
is lost after a system failure. This mode is appropriate for use in
existing main-memory system designs (e.g., Microsoft Hekaton [6])
that already contain recovery infrastructure to recover indexes. In
durable mode, both internal and leaf nodes are stored in NVM.
The BzTree guarantees that all updates are persistent and the index
can recover quickly to a correct state after a failure. For disaster
recovery (media failure), the BzTree must rely on common solutions
like database replication.

Metadata. Besides nodes, there are only two other 64-bit values
used by the BzTree:

555

• Root pointer. This is a 64-bit pointer to the root node of the in-
dex. When running in persistence mode, this value is persisted
in a known location in order to find the index upon restart.
• Global index epoch. When running in persistence mode, the

BzTree is associated with an index epoch number. This value
is drawn from a global counter (one per index) that is initially
zero for a new index and incremented only when the BzTree
restarts after a crash. This value is persisted in a known loca-
tion, and is used for recovery purposes and to detect in-flight
operations (e.g., space allocations within nodes) during a crash.
We elaborate on the use of this value in Sections 4 and 6.

3.2 Complexity and Performance
The BzTree design addresses implementation complexities and per-
formance drawbacks of state-of-the-art latch-free range indexes.

Implementation complexities. State-of-the-art range index de-
signs usually rely on atomic primitives to update state. This is
relatively straightforward for single-word updates. For example,
the Bw-tree [22] updates a node using a single-word CAS to install
a pointer to a delta record within a mapping table. Likewise, de-
signs like the MassTree [25] use a CAS on a status word to arbitrate
node updates. The implementation becomes more complex when
handling multi-location updates, such as node splits and merges
that grow (or shrink) an index. The Bw-tree breaks multi-node
operations into steps that can be installed with a single atomic CAS;
similar approaches are taken by other high-performance indexes
to limit latching across nodes. These multi-step operations expose
intermediate state to threads that concurrently access the index. This
means the implementation must have special logic in place to allow
a thread to (a) recognize when it is accessing an incomplete index
(e.g., seeing an in-progress split or node delete) and (b) take cooper-
ative action to help complete an in-progress operation. This logic
leads to code “bloat” and subtle race conditions that are difficult to
debug [24].

As we will see, the BzTree uses the PMwCAS primitive to update
index state. We show that this approach performs well even when
updating multiple nodes atomically. The BzTree thus avoids the sub-
tle race conditions for more complex multi-node operations. In fact,
using cyclomatic complexity analysis1, we show that the BzTree
design is at least half as complex as the Bw-tree and MassTree [25],
two state-of-the-art index designs.

Performance considerations. Some latch-free designs such as
the Bw-tree rely on indirection through a mapping table to isolate
updates (and node reorganizations) to a single location. Bw-tree
nodes store logical node pointers, which are indexes into the map-
ping table storing the physical node pointers. This approach comes
with a tradeoff. While it avoids propagation of pointer changes up
the index, e.g. to parent nodes, it requires an extra pointer derefer-
ence when accessing each node. This effectively doubles the amount
of pointer dereferences during index traversal, leading to reduced
performance, as we show in our experimental evaluation (Section 7).

The BzTree does not rely on indirection to achieve latch-freedom.
Interior index nodes store direct pointers to child nodes to avoid
costly extra pointer dereferences during traversal. As we show later
in Section 7, this translates into higher performance when compared
to the state-of-the-art in latch-free index design.

4 BzTree Nodes
In this section, we begin by describing the BzTree node organization
and then discuss how the BzTree supports latch-free reads and

1Cyclomatic complexity is a quantitative measure of the number of
linearly independent paths through source code.

(a) Header. (b) Record metadata entry. (c) Status word.

Figure 2: Node layout and details for the BzTree.

updates on these nodes. We then describe node consolidation: an
operation that reorganizes a node to reclaim dead space and speed
up search. We defer discussion of multi-node operations such as
splits and merges until Section 5.

4.1 Node Layout
The BzTree node representation follows a typical slotted-page lay-
out, where fixed-size metadata grows “downward” into the node,
and variable-length storage (key and data) grow “upward." Specif-
ically, a node consists of: (1) a fixed-size header, (2) an array of
fixed-size record metadata entries, (3) free space that buffers updates
to the node, and (4) a record storage block that stores variable-length
keys and payloads. All fixed-sized metadata is packed into 64-bit
aligned words so that it can easily be updated in a latch-free manner
using PMwCAS.

Header. The header is located at the beginning of a node and
consists of three fields as depicted in Figure 2a: (1) a node size
field (32 bits) that stores the size of the entire node, (2) a status
word field (64 bits) that stores metadata used for coordinating up-
dates to a node (content discussed later in this section), and (3) a
sorted count field (32 bits), representing the last index in the
record metadata array in sorted order; any entries beyond this point
might be unsorted and represent new records added to the node.

Record metadata array. Figure 2b depicts an entry in the record
metadata array that consists of: (1) flag bits (4 bits) that are broken
into PMwCAS control bits2 (3 bits) used as internal metadata for
the PMwCAS (e.g., to mark dirty words that require a flush) along
with a visible flag (1 bit) used to mark a record as visible, (2) an
offset value (28 bits) points to the full record entry in the key-value
storage block, (3) a key length field (16 bits) stores the variable-
length key size, and (4) a total length field (16 bits) stores the
total length of the record block; subtracting key length from this
value provides the record payload size.

Free space. Free space is used to absorb modifications to a node
such as record inserts. This free space sits between the fixed-size
record metadata array and the record storage block. The record
metadata array grows “downward” into this space, while the data
storage block grows “upward.” However, internal index nodes do
not contain free space; as we will discuss later, these nodes are
search-optimized and thus do not buffer updates, as doing so results
in degraded binary search performance.

Record storage block. Entries in this block consist of contiguous
key-payload pairs. Keys are variable-length byte strings. Payloads in
internal BzTree nodes are fixed-length (8-byte) child node pointers.
In this paper, we assume payloads stored in leaf nodes are 8-byte
record pointers (as is common in main-memory databases [6]). How-
ever, the BzTree also supports storing full variable-length payloads
within leaf nodes. We discuss how to update both types of payloads
later in this section.

Status word. The status word, depicted in Figure 2c, is a 64-
bit value that stores node metadata that changes during an update.

2PMwCAS relies on these bits to function property. Due to space limi-
tations, we do not detail these bits. Please see [37] for a description.

556

For leaf nodes, this word contains the following fields: (1) PMwCAS
control bits (3 bits) used to atomically update the word, (2) a
frozen flag (1 bit) that signals that the node is immutable, (3) a
record count field (16 bits) that stores the total number of entries
in the record metadata array, (4) a block size field (22 bits) storing
the number of bytes occupied by the record storage block at the end
of the node, and (5) a delete size field (22 bits) that stores the
amount of logically deleted space on the node, which is useful for
deciding when to merge or reorganize the node. Status words for
internal nodes only contain the first two fields; this is because we
do not perform singleton updates on internal nodes and thus do not
need the other fields. We opt to replace internal nodes wholesale
(e.g., when adding or deleting a record) for search performance
reasons.

Internal and Leaf Node Differences. Besides status word for-
mat, internal and leaf nodes differ in that internal nodes are im-
mutable once created, while leaf nodes are not. Internal nodes only
store records in sorted order by key (for fast binary search) and do
not contain free space. Leaf nodes, on the other hand, contain free
space in order to buffer inserts (and updates if the leaf nodes store
full record payloads). This means that leaf nodes consist of both
sorted records (records present during node creation) and unsorted
records (records added to the page incrementally). We chose this
approach because the vast majority of updates in a B+Tree occur
at the leaf level, thus it is important to have leaf nodes quickly ab-
sorb record updates “in place”. On the other hand, internal index
nodes are read-mostly and change less frequently, thus can tolerate
wholesale replacement, e.g., when adding a new key as a result
of a node split. In our experience, keeping internal index nodes
search-optimized leads to better performance than an alternative ap-
proach that organizes internal nodes with both sorted and unsorted
key space [22].

4.2 Leaf Node Operations
This section describes the latch-free read and update operations
on BzTree leaf nodes. For writes, the basic idea is to employ the
PMwCAS to manipulate the page and record metadata atomically in a
latch-free manner, for both reserving space (in the case of copying
variable length data into the page) and making the update “visible”
to concurrent threads accessing the page. Readers access pages
uncontested; they are not blocked by writers. Table 1 summarizes
the PMwCAS operations associated with all the tree operations.

4.2.1 Inserts
New records are added to the free space available in the node. To
insert a new record r, a thread first reads the frozen bit. If it is set,
this means the page is immutable and may no longer be part of the
index (e.g., due to a concurrent node delete). In this case the thread
must re-traverse the index to find the new incarnation of the “live”
leaf node. Otherwise, the thread reserves space for r in both the
record metadata array and record storage block. This is done by
performing a 2-word PMwCAS on the following fields: (1) the node’s
status word to atomically increment the record count field by
one and add the size of r to the block size value, and (2) the
record metadata array entry to flip the offset field’s high-order bit
and set the rest of its bits equal to the global index epoch3. If this
PMwCAS succeeds, the reservation is a success. The offset field
is overridden during this phase to remember the allocation’s index
epoch. We refer to this value as the allocation epoch and use
it for recovery purposes (explained later). We steal the high-order

3Note that setting this field atomically along with the reservation is
safe, since it will only succeed if the space allocation succeeds.

Table 1: PMwCAS Summary Table – The size of the PMwCAS operations
associated with different node and structure modification operations.

Tree Operation PMwCAS Size

NODE OPERATIONS
Insert [Allocation, Completion] 2, 2
Delete 2
Update [Record Pointer, Inlined Payload] 3, 2
Node Consolidation 2

SMOS
Node Split [Preparation, Installation] 1, 3
Node Merge [Preparation, Installation] 2, 3

bit to signal whether the value is an allocation epoch (set) or actual
record offset (unset).

The insert proceeds by copying the contents of r to the storage
block and updating the fields in the corresponding record metadata
entry, initializing the visible flag to 0 (invisible). Once the copy
completes, the thread flushes r (using CLWB or CLFLUSH) if the index
must ensure persistence. It then reads the status word value s to
again check the frozen bit, aborting and retrying if the page became
frozen (e.g., due to a concurrent structure modification). Otherwise,
the record is made visible by performing a 2-word PMwCAS on (1) the
64-bit record metadata entry to set the visible bit and also set the
offset field to the actual record block offset (with its high-order
bit unset) and (2) the status word, setting it to s (the same value
initially read) to detect conflict with a concurrent thread trying to
set the frozen bit. If the PMwCAS succeeds, the insert is a success.
Otherwise, the thread re-reads the status word (ensuring the frozen
bit is unset) and retries the PMwCAS.

Concurrency issues. The BzTree must be able to detect concur-
rent inserts of the same key to enforce, for instance, unique key
constraints. We implement an optimistic protocol to detect con-
current key operations as follows. When an insert operation first
accesses a node, it searches the sorted key space for its key and
aborts if the key is present. Otherwise, it continues its search by
scanning the unsorted key space. If it sees any record with an unset
visible flag and an allocation epoch value equal to the current
global index epoch, this means it has encountered an in-progress
insert that may be for the same key. An entry with an unset visible
flag and an allocation epoch not equal to the global index epoch
means it is either deleted or its allocation was in-progress during a
crash from a previous incarnation of the index and can be ignored
(details in Section 6.3). Instead of waiting for the in-progress insert
to become visible, the thread sets an internal recheck flag to remem-
ber to re-scan the unsorted key space and continues with its insert.
The recheck flag is also set if the thread loses a PMwCAS to reserve
space for its insert since the concurrent reservation may be for the
same key. Prior to setting its own visibility bit, the thread re-scans
the unsorted key space if the recheck flag is set and examines all
prior entries before its own position. Upon encountering a duplicate
key, the thread zeroes out its entry in the record storage block and
sets its offset value to zero; these two actions signify a failed op-
eration that will be ignored by subsequent searches. If the thread
encounters an in-progress operation during its scan, it must wait for
the record to become visible, since this represents an operation that
serialized behind the insert that may contain a duplicate key.

4.2.2 Delete
To delete a record, a thread performs a 2-word PMwCAS on (1) a
record’s metadata entry to unset its visible bit and set its offset
value to zero, signifying a deleted record and (2) the node status
word to increment the delete size field by the size of the target
record. If the PMwCAS fails due to a concurrent delete or conflict on

557

the status word, the thread retries the delete. If the failure is due
to a concurrent operation that set the frozen bit on the node, the
delete must re-traverse the index to retry on a mutable leaf node.
Incrementing delete size allows the BzTree to determine when
to delete or consolidate a node (Section 5).

4.2.3 Update
There are two methods to update an existing record, depending on
whether a leaf node stores record pointers or full payloads.
• Record pointers. If leaf nodes contain record pointers and the

user wishes to update a record in-place, the BzTree is passive
and the update thread can simply traverse the pointer to access
the record memory directly. If the update requires swapping in
a new record pointer, this can be done in place within the record
storage block. To do this, a thread reads both (a) the record
metadata entry m to ensure it is not deleted and (b) the status
word s to ensure the node is not frozen. It then performs a 3-
word PMwCAS consisting of (1) the 64-bit pointer in the storage
block to install the new pointer, (2) the record’s metadata entry,
setting it to m (the same value as it read) to detect conflict with
a competing delete trying to modify the word, and (3) the status
word, setting it to s (the same value it read) to detect conflict
with a competing flip of the frozen bit.
• Inline payloads. If leaf nodes store full payloads, the update

follows the same protocol as an insert by (1) allocating space
in the metadata array and record storage block and (2) writing
a (key, update_payload) record into the record block that
describes the update. The update_payload can be either a
full payload replacement or a “byte diff” describing only the
part(s) of the payload that have changed. Unlike inserts, we
treat concurrent updates to the same key as a natural race,
supporting the “last writer wins” protocol. This means there is
no need to detect concurrent updates to the same key.

4.2.4 Upsert
The BzTree supports the upsert operation common in most key-
value stores. If the record exists in the leaf node, the thread performs
an update to that record. If the record does not exist, the thread
performs an insert. In this case if the insert fails due to another
concurrent insert, the operation can retry to perform an update.

4.2.5 Reads
BzTree update operations do not block readers. A reader traverses
the index to the target leaf node. If the leaf node stores record
pointers, a thread first performs a binary search on the sorted key
space. If it does not find its search key (either the key does not exist
or was deleted in the sorted space), it performs a sequential scan
on the unsorted key space. If the key is found, it returns the record
to the user. If leaf nodes store full record payloads, the search first
scans the unsorted key space starting from the most recent entry, as
recent update records will represent the latest payload for a record.
If the key is not found, the search continues to the sorted key space.

A read simply returns the most recent record it finds on the node
that matches its search key. It ignores all concurrent update activity
on the node by disregarding both the frozen bit and any in-progress
record operations (unset visible bits). These concurrent operations
are treated as natural races, since (a) any record-level concurrency
must be handled outside the BzTree and (b) the frozen bit does not
matter to reads, as it is used by operations attempting to reorganize
the node to serialize with updates.

4.2.6 Range Scans
The BzTree supports range scans as follows. A user opens a scan
iterator by specifying a begin_key and an optional end_key (null if

(a) Freeze node to split

(b) Install split

Figure 3: Node split in the BzTree.

open-ended) defining the range they wish to scan. The scan then pro-
ceeds one leaf node at a time until termination. It begins by entering
an epoch to ensure memory stability and uses the begin_key to find
the initial leaf node. When entering a page, the iterator constructs
a response array that lists the valid records (i.e., visible and not
deleted) on the node in sorted order. In essence, the response array
is a snapshot copy of the node’s valid records in its record storage
block. After copying the snapshot, the iterator exits its epoch so as
to not hold back memory garbage collection. It then services record-
at-a-time get_next requests out of its snapshot. Once it exhausts
the response array, the iterator proceeds to the next leaf node by
entering a new epoch and traversing the tree using a “greater than”
search on the largest key in the response array; this value represents
the high boundary key of the previous leaf node and will allow the
traversal to find the next leaf node position in the scan. This process
repeats until the iterator can no longer satisfy the user-provided
range boundaries, or the user terminates the iterator.

4.3 Leaf Node Consolidation
Eventually a leaf node’s search performance and effective space
utilization degrade due to side effects of inserts or deletes. Search
degrades due to (a) the need to sequentially scan the unsorted key
space (in the case of many inserts) and/or (b) a number of deletes
adding to the “dead space” within the sorted key space, thereby
inflating the cost of binary search. The BzTree will occasionally
consolidate (reorganize) a leaf node to increase search performance
and eliminate dead space. Consolidation is triggered when free
space reaches a minimum threshold, or the amount of logically
deleted space on the node is greater than a configurable threshold.

To perform consolidation of a node N , a thread first performs
a single-word PMwCAS on theN ’s status word to set its frozen flag.
This prevents any ongoing updates from completing and ensures
the consolidation process sees a consistent snapshot ofN ’s records.
The process then scansN to locate pointers to all live records on the
page – ignoring deleted and invisible records – and calculates the
space needed to allocate a fresh node (the size of all valid records
plus free space). If this space is beyond a configurable max page size,
the process invokes a node split (covered in Section 5). Otherwise,
it allocates memory for a new nodeN ′ along with some free space
to buffer new node updates. It then initializes the header and copies
over all live records from N to N ′ in key-sequential order. Now,
N ′ contains all sorted records and is ready to replaceN .

MakingN ′ visible in the index requires “swapping out” a pointer
toN at its parent node P to replace it with a pointer toN ′. To do
this, the thread uses its path stack (a stack recording node pointers
during traversal) to find a pointer to P . If this pointer represents a
frozen page, the thread must re-traverse the index to find the valid
parent. It then finds the record r in P that stores the child pointer to

558

N and performs an in-place update using a 2-word PMwCAS on (1) the
64-bit child pointer in r to install the pointer toN ′ and (2)P’s status
word to detect a concurrent page freeze. If this PMwCAS succeeds,N ′

is now live in the index andN can be garbage collected. However,
N cannot be immediately freed, since this process is latch-free
and other threads may still have pointers to N . As discussed in
Section 2, the BzTree handles this case by using an epoch-based
garbage collection approach to safely free memory.

Concurrency during consolidation. Freezing a node prior to
consolidation will cause any in-progress updates on that node to
fail, as they will detect the set frozen bit when attempting a PMwCAS
on the status word. The failed operations will then retry by re-
traversing the tree to find a new “live” leaf node. If they again
land on a frozen node, this is a signal to help along to complete the
consolidation instead of “spinning” by continuously re-traversing
the index hoping for a live node. In this case, each thread will start
its own consolidate process and attempt to install it at the parent.
This effectively makes threads race to install a consolidated node,
though one will ultimately win. Afterward, each thread resumes its
original operation.

4.4 Internal Node Operations
Updates to existing records on internal nodes are performed in
place following the protocol discussed in the previous section for
installing a new child pointer. To maintain search optimality of
internal nodes, record inserts and deletes (e.g., part of splitting
or deleting a child node) create a completely new version of an
internal node. In other words, an insert or delete in an internal node
immediately triggers a consolidation. This process is identical to
the leaf node consolidation steps just discussed: a new node will be
created (except with one record added or removed), and its pointer
will be installed at the parent.

5 Structure Modifications
We now describe the latch-free algorithms used in the BzTree for
structure modification operations (SMOs). Like single-node updates,
the basic idea for SMOs is to employ the PMwCAS to update page state
atomically and in a latch-free manner. This involves manipulating
metadata like frozen bits, as well as manipulating search pointers
within index nodes to point to new page versions (e.g., split pages).

We begin with a presentation of the node split and node merge
algorithms. We then discuss the interplay between the algorithms
when commingling structural changes and data changes. We also ex-
plain why threads concurrently accessing the tree are guaranteed to
not observe inconsistencies, which simplifies both implementation
and reasoning about correctness.

5.1 Prioritizing Structure Modifications
Triggering SMOs in the BzTree relies on a simple deterministic
policy. A split is triggered once a node size passes a configurable
max_size threshold (e.g., 4KB). Likewise, a node delete/merge is
triggered once a node’s size falls below a configurable min_size.

If an update thread encounters a node in need of an SMO, it
temporarily suspends its operation to perform the SMO before con-
tinuing its operation (we do not force readers to perform SMOs).
Given that SMOs are relatively heavyweight, prioritizing them over
(lightweight) single-record operations is important. Otherwise, in
a latch-free race, single-record operations would always win and
effectively starve SMOs.

5.2 Node Split
Node splits are broken into two phases (1) a preparation phase that
allocates and initializes new nodes with the SMO changes and (2) an

installation phase that atomically installs the new nodes in the index.
We now describe the split details with the aid of Figure 3.

Preparation. To split a nodeN , we first perform a PMwCAS on its
status word to set the frozen bit, as depicted in Figure 3a. We then
scanN to find all valid records and calculate a separator key k that
provides a balanced split. We then allocate and initialize three new
nodes. (1) A new version of N (call it N ′) that contains all valid
records with keys less than or equal to k, (2) a new sibling node O
that contains all valid records with keys greater than k, and (3) a
new version ofN ’s parent node P (call it P ′) that replaces the child
pointer of N with a pointer to N ′ and adds a new search record
consisting of key k and a pointer to the new child O. All nodes are
consolidated (search-optimized) and store sorted records.

Installation. Installation of a split involves “swapping out” P to
replace it with P ′, thereby making the new split nodes N ′ and O
visible in the index. Figure 3b depicts this process. The installation
is atomic and involves using a 3-word PMwCAS to modify the follow-
ing words (1) the status word of P to set its frozen bit, failure to set
the bit means it conflicts with another update to P , (2) the 64-bit
child pointer to P at its parent G (N ’s grandparent) to swap in the
new pointer to P ′, and (3) G’s status word to detect a concurrent
page freeze. If the PMwCAS succeeds, the split is complete, and the
old nodesP andN are sent to the epoch-protected garbage collector.
On failure, a thread retries the split, and the memory for nodesN ′,
P ′, and O can be deallocated immediately since they were never
seen by another thread.

5.3 Node Merge
The BzTree performs node merges in a latch-free manner similar
to node splits. Before triggering a delete of a node N , we first
find a sibling that will absorbN ’s existing records. We choseN ’s
left sibling L if (1) it shares a common parent4 P and (2) is small
enough to absorb N ’s records without subsequently triggering a
split (defeating the purpose of a merge). Otherwise, we look atN ’s
right siblingR, verifying it has enough space to absorbN ’s records
without a split. If neither R nor L satisfy the merge constraints,
we allow N to be underfull until these constraints are met. In the
remainder of this section, we assumeN merges with its sibling L.

Preparation. To initiate the delete, we first perform a PMwCAS
on the status word of both L and N to set their frozen bit. We
then allocate and initialize two new nodes: (1) a new version of the
left sibling L′ containing its own valid records and all ofN ′s valid
records, and (2) a new version ofN and L’s parent P ′ that replaces
the child pointer of L with a pointer to L′ and removes the search
record containing the separator key between L and N along with
the child pointer toN .

Installation. Installation of the node delete and merge involves
installing the new version of P ′ in the index that makes the merged
child node L′ visible and removes N and L. This operation is
identical to that of node split that replaces the parent P with P ′ by
both freezing P as well as updating its parent G to install the new
child pointer to P ′.

5.4 Interplay Between Algorithms
The BzTree offloads the handling of ACID transactions to a higher
software layer of the system. This could, for instance, be a logical
concurrency control component in a decoupled database system [22].
The index itself is responsible for correctly serializing conflicting
data and structural changes. We now describe how BzTree ensures
that threads do not observe the effects of in-progress changes.

4We chose to avoid merges that cross parent nodes in order to
minimize the number of modified nodes.

559

Co-operative PMwCAS. B+Tree implementations typically rely on
latches for preventing threads from observing changes performed
by concurrent threads. The BzTree instead employs PMwCAS to
accomplish this. As described in Section 2.3, we employ a latch-
free PMwCAS library. The PMwCAS operation is cooperative, in that
any thread (reader or writer) that encounters an in-progress PMwCAS
will first help along to complete the operation before continuing with
its own. This policy effectively serializes PMwCAS operations that
might conflict. It also ensures the atomicity of operations within the
BzTree. Since all updates to the index are performed using PMwCAS,
updates will either succeed uncontested, or the PMwCAS help-along
protocol will arbitrate conflict and abort some conflicting operations.

Record operations and structure modifications. BzTree em-
ploys the status word to correctly serialize conflicting data and
structural changes that might conflict with each other. For instance,
an in-progress consolidate or SMO will first set the frozen bit within
a node. This causes all in-flight record-level operations to fail their
PMwCAS due to conflict on the status word. These record operations
will then retry and either see (a) the frozen version of a node that
requires maintenance, for which it will attempt to complete or (b) a
new (unfrozen) version of the node that is ready for record updates.

Serializing structure modifications. The BzTree uses a cooper-
ative approach for serializing conflicting SMOs. Consider a node
deletion operation. To delete nodeN , the BzTree first checks if its
left sibling L is alive. If it observes that L is frozen, then it detects
that another structural change is in progress. In this case the BzTree
serializes the deletion ofN (if still needed) after that of L.

6 BzTree Durability and Recovery
In this section, we illustrate how BzTree ensures recoverability of
the tree across system failures using PMwCAS. BzTree stores the tree
either on DRAM when used in volatile mode, or on NVM when
used in durable mode. In volatile mode, the BzTree does not flush
the state of the tree to durable storage. However, when used in
durable mode, it persists the tree on NVM to preserve it across
system failures. The BzTree does not need to employ a specific
recovery algorithm. It instead relies on the recovery algorithms
of a persistent memory allocator and the PMwCAS library to avoid
persistent memory leaks and ensure recoverability, respectively. We
now describe these algorithms in detail.

6.1 Persistent Memory Allocation
A classic volatile memory allocator with an allocate and free
interface does not ensure correct recovery when used on NVM. If the
allocator marks a memory chunk as being in use (due to allocate),
and the application (e.g., BzTree) fails to install the allocated chunk
on NVM before a crash, then this causes a persistent memory leak.
In this state, the memory chunk is “homeless” in that it can neither
be seen by the application nor by the memory allocator after a crash.

While creating a safe and correct persistent memory allocator is
outside the scope of this paper, there have been many proposals.
We assume availability of a three-stage allocator [31] that provides
the following states: (1) allocate, (2) activated, and (3) free.
The application first requests the allocation of a memory chunk.
The allocator updates the chunk’s meta-data to indicate that it has
been allocated and returns it to the application. During recovery
after a system failure, the allocator reclaims all allocated memory
chunks. To retain the ownership of the memory chunk even after
a failure, the application must separately request that the allocator
activate the memory chunk. At this point in time, the application
owns the memory chunk and is responsible for its lifetime, including
any cleanup after a failure.

The application must carefully interact with the allocator in the
activation process, through an interface (provided by the allocator)
that is similar to posix_memalign which accepts a reference of the
target location for storing the address of the allocated memory. This
design is employed by many existing NVM systems [17, 28, 36,
31]. The application owns the memory only after the allocator has
successfully persisted the address of the newly allocated memory in
the provided reference.

6.2 Durability
There are two cases by which the BzTree handles durability of index
data.

• Variable-length data. Newly inserted records as well as new
node memory (allocated as part of a consolidate, split, or
delete/merge) represents variable-length data in the BzTree.
To ensure durability, the BzTree flushes all variable-length data
before it can be read by other threads. That is, newly inserted
record memory on a node is flushed before the atomic flip of
its visible bit. Likewise, new node memory is flushed before
it is “linked into” the index using a PMwCAS. This flush-before-
visible protocol ensures that variable-length data in the BzTree
is durable when it becomes readable to concurrent threads.
• Word-size data. The durability of word-size modifications is

handled by the PMwCAS operation. As mentioned in Section 2.3,
the PMwCAS ensures durability of all words it modifies upon
acknowledging success. Thus, modifications like changing
the node status word and reserving and updating a record’s
metadata entry are guaranteed to be durable when modified
using the PMwCAS. In addition, all modifications performed by
the PMwCAS are guaranteed to be durable to concurrent readers.

The BzTree avoids inconsistencies arising from write-after-read
dependencies. That is, it guarantees that a thread cannot read a
volatile modification made by another thread. Otherwise, any action
taken after the read (such as a dependent write) might not survive
across a crash and lead to an inconsistent index. As mentioned
above, the flush-before-visible protocol ensures this property for
variable-length modifications to the BzTree. Likewise, the PMwCAS
ensures this property for word-sized modifications.

6.3 Recovery
Memory lifetime. The PMwCAS library maintains a pool of descrip-
tors at a well-defined location on NVM. Each word descriptor con-
tains a field specifying a memory recycling policy. This policy
defines how the memory pointed to by the old value and new value
fields should be handled when the PMwCAS operation concludes. The
PMwCAS library supports two memory recycling policies: NONE and
FREE-ONE. With the former policy, there is no need for recycling
memory. The BzTree uses this policy for modifying non-pointer
values, such as the status word in nodes. With the latter policy, the
PMwCAS library frees the memory pointed to by the old (or new)
value depending on whether the PMwCAS operation succeeds (or
fails)5. The BzTree uses this policy when allocating and installing a
new node in the tree. To activate the node memory, BzTree provides
a memory reference to the descriptor word responsible for holding
a pointer to the node memory. This ensures an atomic transfer of
the activated memory pointer to the descriptor. The memory life-
time is then handled by the PMwCAS library. In case of a failure, the
node’s memory is reclaimed by the recovery algorithm. This obvi-
ates the need for BzTree to implement its own memory recycling
mechanism.

5Memory lifetime safety is managed by the epoch-based mechanism
described in Section 2.3

560

Recovery steps. During recovery from a system failure, the al-
locator first runs its recovery algorithm to reclaim memory chunks
that have been reserved but not yet activated. Then, the PMwCAS
library executes its recovery algorithm to ensure that the effects of
all successfully completed PMwCAS operations are persisted. As cov-
ered in Section 2.3, upon restart after a crash, any in-flight PMwCAS
operations marked as succeeded will roll forward, otherwise they
will roll back. For operations involving memory pointer swaps, the
PMwCAS will ensure that allocated and active memory dereferenced
by its descriptors will be correctly handled according to the provided
memory recycling policy.

Aborted space allocations. While PMwCAS recovery can handle
recovery of 64-bit word modifications, including pointer swaps and
node memory allocations, it cannot handle recovery of dangling
record space allocations within a node. As detailed in 4.2, an insert6

is broken into two atomic parts: Ê record space allocation and
Ë record initialization (copying key bytes and populating metadata)
and making the record visible. The BzTree must be able to detect
and recover failed inserts that allocated space within a node in Ê,
but crashed during Ë before a record was fully populated and made
visible. The BzTree uses the allocation epoch for this purpose
(as described in Section 4.2.1, this value is temporarily stored in
the offset field until Ë completes). Since this field is populated
atomically during Ê, any subsequent failure before completion of
Ë will be detected after recovery increments the global index epoch.
Doing so will invalidate any searches – such as those done by inserts
checking for duplicate keys – that encounter an allocation from a
previous epoch. This dangling node space will be reclaimed when
the node is rebuilt during consolidation or a structure modification.

7 Evaluation
7.1 Experimental Setup
7.1.1 Environment
We implemented the BzTree in approximately 3,000 lines of C++
code, using the PMwCAS library to ensure atomicity and durabil-
ity of tree updates [37]. This library employs the Win32 native
InterlockedCompareExchange64 to perform CAS. NVM devices
based on new material technologies (e.g., Intel 3D XPoint) are
not yet commercially available. We instead target flash-backed
NVDIMMs. These NVDIMMs are DRAM whose data content is
saved to flash storage on power failure. We conduct experiments
on a workstation running Windows Server 2012 on an Intel Xeon
E7-8890 CPU (at 2.2GHz) with 24 physical cores.

7.1.2 Evaluation Workloads
YCSB Benchmark: The Yahoo! Cloud Serving benchmark (YCSB)
approximates typical large-scale cloud service [4]. We construct
a set of workload mixtures that are based on YCSB. Both BzTree
and Bw-tree are treated as standalone key-value record stores that
accept read (Get), write (Insert/Delete/Update/Upsert), and
range scan operations. We vary the amount of read and write opera-
tions using four different workload mixtures:

• Read-Only: 100% reads

• Read-Mostly: 90% reads, 10% writes

• Read-Heavy: 75% reads, 25% writes

• Balanced: 50% reads, 50% writes

By default, the write operations in the workload mixtures are
Upserts. We configure the distribution of the keys accessed by the
index operations to be based on the following distributions:

6And update if leafs contain full record payloads.

• Random: 64-bit integers from a Uniform distribution.
• Zipfian: 64-bit integers from a Zipfian distribution.
• Monotonic: 64-bit monotonically increasing integer.
We generate a skewed workload using the Zipfian distribution.

Unless mentioned otherwise, our primary performance metric is
throughput measured in operations per second. We use 48 worker
threads equal to the number of logical cores on our experiment ma-
chine. We use 8-byte keys and values, and configure the default page
size for both BzTree and Bw-tree to be 1 KB. In all our experiments,
we prefill the index with 1M records. We observed similar trends
when the index is prefilled with ten million records. The BzTree,
by default, assumes that keys are variable length and uses the offset
field in the record metadata entry to dereference keys (there is no
fixed-length optimization). We execute all the workloads three times
under each setting and report the average throughput.

7.2 Design Complexity
As minimized complexity is one of our primary goals, we begin
by quantifying the BzTree design complexity compared to the Bw-
tree. The Bw-tree’s latch-free tree algorithms make use of a single-
word CAS [22]. Its complexity stems from the fact that multi-word
updates temporarily leave the index in an inconsistent state that other
threads must detect and handle. The BzTree instead uses PMwCAS to
atomically install changes at multiple tree locations, and this reduces
its complexity considerably. Consider the node split algorithm: if
the node split operation propagates only up to the great-grandparent
node, it involves atomic updates to 5 tree locations. With a single-
word CAS approach, the developer must explicitly handle many of
the 25 (32) possible intermediate states that could be exposed to
concurrent threads.7 In contrast, with PMwCAS, the developer only
needs to reason about 2 tree states: the initial state with none of
the locations mutated, and the final state with all the five locations
successfully mutated. More broadly, PMwCAS shrinks the state space
associated with mutating k tree locations from 2k states to k states.

To quantify the reduction in design complexity, we measure the
lines of code (LOC) of the node split algorithm in BzTree and Bw-
tree. While the Bw-tree implementation contains 750 LOC, the
one in BzTree only contains 200 LOC. This is because the BzTree
implementation handles fewer tree states. A relative reduction in
LOC does not necessarily imply a more maintainable data structure.
We therefore measured the cyclomatic complexity (CC) of these
algorithms. CC is a quantitative measure of the number of linearly
independent paths through the function’s source code, and repre-
sents the function’s complexity. Higher values of CC, therefore,
correspond to more complex functions that are harder to debug and
maintain. CC of the node split algorithms in BzTree and Bw-tree
are 7 and 12, respectively. This demonstrates that PMwCAS reduces
the design complexity of BzTree’s algorithms.

7.3 Runtime Performance
We now provide an analysis of the runtime performance of BzTree
compared to the Bw-tree on different workload mixtures and key
access distributions. For each configuration, we scale up the number
of worker threads. The worker threads process tree operations in
a closed loop. These experiments are run with both indexes in
volatile DRAM mode to (a) showcase the peak performance of the
BzTree (we study durability in the next section) and (b) provide
a fair comparison to the Bw-tree since its design targets volatile
DRAM with no straightforward extension to NVM.
7This is because each tree location can either be updated or not at
a given point in time. Although some of these intermediate states
might never be observed in practice, we note that the state space
grows exponentially.

561

CONTAINER: BZTREE BWTREE

1 8 16 24 32 40 48
Threads

0

12500

25000

37500

50000

Th
ro

ug
hp

ut
(K

)

(a) Read-only Workload

1 8 16 24 32 40 48
Threads

0

12500

25000

37500

50000

Th
ro

ug
hp

ut
(K

)

(b) Read-mostly Workload

1 8 16 24 32 40 48
Threads

0

12500

25000

37500

50000

Th
ro

ug
hp

ut
(K

)

(c) Read-heavy Workload

1 8 16 24 32 40 48
Threads

0

12500

25000

37500

50000

Th
ro

ug
hp

ut
(K

)

(d) Balanced Workload

Figure 4: Random Key Access Distribution – The throughput of BzTree and Bw-tree for the YCSB benchmark with different workload mixtures.

Random Key Access Distribution: We first consider the results
on the read-only workload with random key distribution shown in
Figure 4a. These results provide an upper bound on the tree’s per-
formance because none of the operations modify the tree. The most
notable observation from this experiment is that BzTree delivers 28%
higher throughput than Bw-tree. This is primarily because BzTree
employs raw pointers to inter-link tree nodes meaning readers do
not have to use indirection to locate child nodes.

The benefits of BzTree algorithms are more prominent on the
write-intensive workloads in Figures 4c and 4d, where BzTree’s
throughput is 1.7× higher and 2.4× higher than that of Bw-tree,
respectively. We attribute this gap to the reduction in algorithm
complexity and BzTree’s ability to perform in-place updates.

Zipfian Key Access Distribution: Figures 5a and 5b present the
throughput of BzTree and Bw-tree on different workloads with the
Zipfian key distribution. The benefits of BzTree’s reader-friendly
algorithms are prominent on the read-only workload, where BzTree
outperforms Bw-tree by 33%. By skipping the layer of indirec-
tion through the mapping table, readers can traverse BzTree faster
than Bw-tree. Unlike Bw-tree, BzTree supports inlined updates in
leaf nodes and always keeps the interior nodes consolidated. This
reduces pointer chasing, thereby enabling a faster read path.

On the balanced workload in Figure 5b, BzTree’s throughput is
4.3× higher than that of Bw-tree. Since most of key accesses are
directed to a few leaf nodes with the Zipfian key distribution, the
in-place update design of BzTree reduces the need for frequent node
splits in comparison to Bw-tree. This shrinks the amount of work
performed by writers in BzTree, since the split operations take more
time to complete compared to single record writes.

Monotonic Key Access Distribution: The performance of Bw-
tree and BzTree on workloads with the monotonic key distribution
is shown in Figures 5c and 5d. We observe that on the balanced
workload, BzTree and Bw-tree deliver 34 M and 21 M operations
per second, respectively. The benefits of processor caching are
prominent on this workload since keys are monotonically increasing.
This is a pathological configuration for concurrent writers, since
they always contend on the same node. It is an approximate upper
bound on the worst-case behavior of BzTree’s latch-free algorithms
on write-intensive workloads.

7.4 Durability
We now examine the cost of persistence by measuring the runtime
performance of BzTree in volatile and durable modes on different
workload mixtures based on the random key access distribution.
As shown in Figures 6a and 6b, the persistence overhead is 5%
and 12% on the read-mostly and balanced workloads, respectively.
We attribute the small drop in throughput to the overhead of using
PMwCAS in durable mode as opposed to volatile version [37].

In durable mode, the BzTree additionally uses the CLFLUSH in-
struction to write back the modified tree contents to NVM. Since

CONTAINER: BZTREE BWTREE

1 8 16 24 32 40 48
Threads

0

15000

30000

45000

60000

Th
ro

ug
hp

ut
(K

)

(a) Read-only Workload (Zipfian)

1 8 16 24 32 40 48
Threads

0

15000

30000

45000

60000

Th
ro

ug
hp

ut
(K

)

(b) Balanced Workload (Zipfian)

1 8 16 24 32 40 48
Threads

0

20000

40000

60000

80000

Th
ro

ug
hp

ut
(K

)

(c) Read-only Workload (Monotonic)

1 8 16 24 32 40 48
Threads

0

20000

40000

60000

80000

Th
ro

ug
hp

ut
(K

)

(d) Balanced Workload (Monotonic)

Figure 5: Zipfian and Monotonic Key Access Distributions – The
throughput of BzTree and Bw-tree for the YCSB benchmark.

MODE: EPHEMERAL DURABLE

1 8 16 24 32 40 48
Threads

0

12500

25000

37500

50000

Th
ro

ug
hp

ut
(K

)

(a) Read-mostly Workload

1 8 16 24 32 40 48
Threads

0

12500

25000

37500

50000

Th
ro

ug
hp

ut
(K

)

(b) Balanced Workload

Figure 6: Cost of Persistence – The throughput of BzTree for the YCSB
benchmark in volatile and durable modes across different workload mixtures
based on the random key access distribution.

CLFLUSH invalidates the line from the cache, this results in compul-
sory cache miss when the same data is accessed after the line has
been flushed. Future processors will support the CLWB instruction,
which unlike CLFLUSH, does not invalidate the line and instead only
transitions it to a non-modified state [15]. We expect that such
a lightweight cache-line flushing instruction will further increase
BzTree’s throughput in durable mode by improving its caching
behavior. This experiment illustrates that the same BzTree imple-
mentation can be used for indexes in both DRAM and NVM with a
moderate cost to seamlessly support persistence.

7.5 Scan Performance
We next examine the performance of BzTree and Bw-tree on differ-
ent workload mixtures of the YCSB benchmark containing range
scan operations. In this experiment, we configure the scan predi-
cate’s key range so that the scan operation starts from a uniformly

562

CONTAINER: BZTREE BWTREE

1 8 16 24 32 40 48
Threads

0

2250

4500

6750

9000

Th
ro

ug
hp

ut
(K

)

(a) Read-mostly Workload

1 8 16 24 32 40 48
Threads

0

4500

9000

13500

18000

Th
ro

ug
hp

ut
(K

)

(b) Balanced Workload

Figure 7: Scan Performance – The throughput of BzTree and Bw-tree on
different workload mixtures containing range scan operations.

random starting offset, and returns at most 10 matching records.
The most notable observation from the results shown in Figure 7
is that BzTree scales better than Bw-tree. On the read-mostly
workload with range scan operations, as shown in Figure 7a, the
BzTree’s throughput with 48 worker threads is 28.5× that of its
single-threaded performance. In contrast, Bw-tree’s throughput with
48 worker threads is 16.4× that of its single-threaded performance.
This is mainly due to less pointer chasing and memory accesses
in the BzTree. The Bw-tree must always perform delta updates to
pages (new memory prepended to a node representing an update),
even for 8-byte payload changes. This causes the scan to perform
pointer chases over delta chains, e.g., when constructing a page
snapshot to service get-next requests.

The BzTree’s throughput on the read-mostly workload is 1.8×
higher than that of Bw-tree. We attribute this to the reduction in
indirection overhead of range scan operation, that forms 90% of the
read-mostly workload. On the balanced workload, as shown in Fig-
ure 7b, the BzTree outperforms Bw-tree by 2.7×. This performance
gap is realized by virtue of the reduction in algorithm complexity
and BzTree’s ability to perform in-place updates, compared to the
Bw-tree’s usage of delta updates. We observe that the absolute
throughput of BzTree on the balanced workload is 2.1× higher than
that on the read-mostly workload. This is because range scan is
more expensive than the write operation, and the latter operation is
more often executed in the balanced workload.

7.6 PMWCAS Statistics
To perform record updates and install structure modifications, the
BzTree uses the PMwCAS operation with the word count varying from
1 to 3. We analyzed the failure frequency of PMwCAS operations in
the BzTree across varying degrees of contention on the balanced
workload. We observe an increase of 0.02% to 0.12% in the fraction
of failed PMwCAS operations going from 8 to 48 threads. This is
primarily because multiple worker threads concurrently attempt
to split the same leaf node and only one thread succeeds. A key
takeaway is that on all configurations, the overall fraction of failed
PMwCAS operations remains less than 0.2%.

7.7 Sensitivity Analysis
We now analyze how the key size and unsorted free space size affects
the runtime performance of BzTree on the YCSB benchmark. We
ran the read-only and read-heavy workloads based on the random
key distribution.

Key Size: In this experiment, we fix the page size to be 1 KB,
and vary the key size from 8 B to 128 B. The key observation from
the results in Figure 8a is that the throughput drops by 39% when
we increase the key size on the read-only workload. We attribute
this to more expensive key comparisons in case of longer keys, both
in the interior and leaf nodes. The performance impact of key size
is more prominent on the read-heavy workload where we observe
a throughput drop of 46%. This is because with longer keys, the

WORKLOADS: READ-ONLY READ-HEAVY

8 16 32 64 128
Key sizes (B)

0

11250

22500

33750

45000

Th
ro

ug
hp

ut
(K

)

(a) Key size

512 256 128 64 32
Free space size (B)

0

7500

15000

22500

30000

Th
ro

ug
hp

ut
(K

)

(b) Free space size

Figure 8: ‘Impact of Key Size and Free Space Size – The throughput of
BzTree while running the YCSB benchmark under different key size and
free space size settings.

LEAF NODE SEARCH
INTERNAL NODE SEARCH

MWCAS
REST

Read-Mostly Read-Heavy Balanced

Workload Type

0

25

50

75

100

Ti
m

e
S

pe
nt

(%
)

Figure 9: Execution Time Breakdown – The time that BzTree spends in
its internal components when running the balanced workload.

leaf nodes are filled faster with fewer keys, and this leads to more
frequent node splits that negatively affects throughput.

Free Space Size: Lastly, we examine the impact of the size of the
free space on the BzTree’s performance. We fix the page size to be
1 KB, and vary the free space size from 512 B to 32 B. The BzTree
uses the remaining space in the leaf node to store the sorted keys,
as described in Section 4.1. Figure 8b shows that the throughput
increases by 45% when we decrease the free space size. This is
because readers need to perform fewer key comparisons in leaf
nodes as the free space can only contain fewer keys. Reducing the
free space in this manner, however, increases the frequency of node
split operations and reduces space utilization. This is illustrated on
the read-heavy workload, where BzTree delivers its peak throughput
when the free space size is 128 B. We attribute this to more node
splits and key comparisons under smaller and larger free space size
settings, respectively.

7.8 Memory Footprint
We next compare the peak memory footprint of BzTree and Bw-tree
data structures while running the balanced workload in the YCSB
benchmark. We observe that BzTree’s footprint is 1.6× smaller than
that of Bw-tree for trees whose sizes range from 100 K to 10 M keys.
For instance, when we prefill the index with 10 M keys, the peak
memory footprint of BzTree and Bw-tree are 228 MB and 365 MB,
respectively. We attribute this to the compact node layout of BzTree
and its ability to buffer updates in place.

7.9 Execution Time Breakdown
In this experiment, we analyze the time that BzTree spends in its
internal components during execution. We examine the balanced
workload in the YCSB benchmark with uniform key access distri-
bution. We use profiling tools available in Windows Server to track
the cycles executed within the different components of BzTree [26].
We start this profiling after prefilling the index. The cycles are clas-
sified into four categories: (1) leaf node search, (2) internal node
search, (3) PMwCAS, and (4) other miscellaneous components. This
last category includes the time spent in copying data and performing
tasks such as garbage collection.

563

The most notable result for this experiment, as shown in Figure 9,
is that even on the balanced workload, BzTree only spends 12% of
its time on performing PMwCAS operations. This is because it spends
the bulk of the time on traversing the tree and searching the leaf
and internal nodes. We observe that the proportion of the time that
BzTree spends on searching nodes increases from 61% to 78% when
the workload is not write-intensive. This explains why the BzTree
optimizations are more beneficial for the balanced workload.

8 Related Work
BzTree’s design benefited from prior work on latch-free indexes,
persistent indexes, and MWCAS frameworks.

Latch-free Indexes. Modern devices with multi-core processors
and high-capacity memory mandate highly concurrent indexes. This
gave rise to the design of Bw-tree, a latch-free index built on top of
the single-word CAS primitive [22]. Although such an index delivers
high performance, it is challenging to design, debug, and extend.
The developers must carefully design every SWCAS-based latch-
free algorithm so that each atomic action leaves the tree in a valid
intermediate state for other threads [8, 33]. We employ the stronger
MWCAS primitive to simplify BzTree’s design.

Other state-of-the-art data structures include ART and MassTree.
ART is a trie-based data structure that employs an adaptive node
structure and adopts an optimistic lock coupling synchronization
algorithm [21, 20]. MassTree is a hybrid cache-conscious B-tree/trie
data structure that eschews traditional latch coupling [25]. Unlike
BzTree, its synchronization algorithm relies on clever use of atomic
operations and hand-over-hand latching. With this approach, devel-
opers need to keep track of the latches being held along different
control flow paths in order to release the correct set of locks. This
increases the design complexity of the data structure. For example,
we found that the cyclomatic complexity of the node split algorithm
in MassTree is 19, which is more than two times that of the BzTree
complexity of 7 (Section 7.2). In addition, MassTree and ART, by
design, do not ensure durability on NVM.

Persistent Indexes. The advent of NVM triggered the devel-
opment of different persistent indexes [2, 3, 28, 34, 38]. Write
atomic B+Tree adopts a redo-only logging algorithm for ensuring
durability [3]. In contrast, NV-Tree [38] employs an append-only up-
date strategy and re-constructs internal index nodes during recovery.
However, it requires the internal nodes to be stored in consecutive
memory blocks. FPTree [28] is a hybrid DRAM-NVM index that
keeps the internal nodes in volatile memory and stores the leaf nodes
on NVM, requiring the overhead of a partial index rebuild during re-
covery. It exploits hardware transactional memory and fine-grained
locks to handle concurrent internal and leaf node accesses.

The BzTree design differs from these approaches in three ways:

• The BzTree does not require custom recovery code. Prior persis-
tent NVM index designs employ sophisticated logging and/or
recovery algorithms. These logging algorithms record all the
tree updates to persistent storage in order to achieve persistence,
and periodically write out checkpoints to speed up recovery.
For example, the FPTree’s node split algorithm requires the
writer to log information about the node being split and the
newly allocated leaf node. Depending on when the crash occurs
within the algorithm, the writer either rolls the split operation
forward or backward. Developing correct logging and recovery
algorithms are challenging and contributes to the increased
design complexity of these data structures. In addition, existing
designs often require the reconstruction of internal index nodes
after a system failure. In contrast, BzTree does not require
a tree-level recovery algorithm. As discussed in Section 6.3,

fixed size-word updates and memory allocations are recover-
able through the general-purpose PMwCAS primitive, while
“dangling” space allocations within a node are detected using
the global index epoch.
• The BzTree design works seamlessly across both volatile and

persistent environments. To our knowledge, the BzTree is the
only index design flexible enough to function and perform
well in both environments. As demonstrated in Section 7, the
BzTree performs better than a state-of-the art B+Tree in volatile
DRAM and takes a modest 8% performance hit to guarantee
persistence on NVM.
• Latch-free design. The BzTree is the only design that is latch-

free and highly concurrent, while also ensuring persistence
guarantees on NVM.

Multi-Word CAS. A multi-word CAS instruction (MWCAS) simpli-
fies latch-free programming of high performance data structures as
exemplified in BzTree. A general-purpose MWCAS implementation
is not available in hardware. Prior work has focused on realizing
MWCAS in software using the hardware-provided SWCAS [1, 9, 13,
18]. The PMwCAS library we use is based on the volatile MWCAS primi-
tive proposed by Harris et al. [11]. MWCAS and transactional memory
systems are similar in that they require either all or none of the sub-
operations to succeed [13]. Software transactional memory systems
have limited adoption due to high performance overhead [32]. In
contrast, hardware transactional memory (HTM) [39, 19] exhibits
lower performance overhead and can help simplify latch-free design.
However, HTM suffers from spurious transaction aborts either due
to transaction size or because of CPU cache associativity [24]. The
PMwCAS library does not use HTM.

9 Conclusion
It is challenging to design, debug, and extend latch-free indexing
structures. This is because “traditional” latch-free designs rely on a
single-word CAS instruction that requires the developer to carefully
stage every atomic action so that each action leaves the tree in an
intermediate state that is recognizable to concurrent accessors. Up-
coming NVM environments will only make this task more difficult
due to durability guarantees and the interplay with volatile CPU
caches. With the BzTree design we demonstrate that using PMwCAS,
a multi-word compare-and-swap with durability guarantees, helps
reduce index design complexity tremendously. Our experimental
evaluation shows that even though PMwCAS is computationally more
expensive than a hardware-based single-word CAS, the simplicity
that we gain by using PMwCAS improves not only the maintainability
but also the performance of the BzTree. A cyclomatic complexity
analysis shows that the BzTree is at least half as complex as state-
of-the-art main-memory index designs (the Bw-tree and MassTree).
Another benefit of the BzTree design is its flexibility: the same de-
sign can be used on both volatile DRAM and NVM, with a roughly
8% overhead to ensure persistence. In addition, existing B+Tree
implementations that achieve durability on NVM often employ com-
plex algorithms for ensuring recoverability. The BzTree, on the
other hand, does not rely on custom recovery techniques: it simply
relies on the general-purpose PMwCAS to roll forward (or back) its in-
flight word modifications before becoming online and active. This
allows for near-instantaneous recovery of the BzTree index and is a
defining feature of its design.

Acknowledgements
We would like to thank Donald Kossmann, Phil Bernstein, and
David Lomet for their feedback that helped improve this work.

564

10 References
[1] J. H. Anderson, S. Ramamurthy, and R. Jain. Implementing wait-free

objects on priority-based systems. PODC, pages 229–238, 1997.
[2] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database algorithms

for phase change memory. In CIDR, pages 21–31, 2011.
[3] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory.

PVLDB, 8(7):786–797, 2015.
[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with YCSB. In SoCC, pages
143–154, 2010.

[5] R. Crooke and M. Durcan. A revolutionary breakthrough in memory
technology. Intel 3D XPoint launch keynote, 2015.

[6] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL Server’s
Memory-optimized OLTP Engine. In SIGMOD, pages 1243–1254,
2013.

[7] Everspin. DDR3 DRAM compatible MRAM: Spin torque technology.
https://www.everspin.com/
ddr3-dram-compatible-mram-spin-torque-technology-0,
2017.

[8] K. Fraser. Practical lock-freedom. PhD thesis, University of
Cambridge, 2004.

[9] M. Greenwald. Two-handed emulation: How to build non-blocking
implementations of complex data-structures using DCAS. PODC,
pages 260–269, 2002.

[10] J. Handy. Understanding the Intel/Micron 3D XPoint memory. http:
//www.snia.org/sites/default/files/SDC15_presentations/
persistant_mem/JimHandy_Understanding_the-Intel.pdf,
2015. Storage Developer Conference.

[11] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word
compare-and-swap operation. DISC, pages 265–279, 2002.

[12] J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton. Architecture of
a Database System. Foundations and Trends in Databases,
1(2):141–259, 2007.

[13] M. Herlihy. A methodology for implementing highly concurrent data
objects. ACM TOPLAS, 15(5):745–770, Nov. 1993.

[14] M. Hosomi et al. A novel nonvolatile memory with spin torque
transfer magnetization switching: spin-ram. IEEE International
Electron Devices Meeting (IEDM), pages 459–462, 2005.

[15] Intel. Intel Architecture Instruction Set Extensions Programming
Reference. https://software.intel.com/sites/default/
files/managed/0d/53/319433-022.pdf, 2017.

[16] Intel Corporation. Intel®64 and IA-32 architectures software
developer’s manuals. 2016.

[17] Intel Corporation. NVM library. http://www.pmem.io, 2016.
[18] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations

of strong shared memory primitives. PODC, pages 151–160, 1994.
[19] C. Jacobi, T. Slegel, and D. Greiner. Transactional memory

architecture and implementation for IBM System Z. MICRO, pages
25–36, 2012.

[20] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful
indexing for main-memory databases. ICDE, pages 38–49, 2013.

[21] V. Leis, F. Scheibner, A. Kemper, and T. Neumann. The ART of
practical synchronization. DaMoN, pages 3:1–3:8, 2016.

[22] J. Levandoski, D. Lomet, and S. Sengupta. The Bw-Tree: A B-tree for
new hardware platforms. ICDE, pages 302–313, 2013.

[23] J. Levandoski, D. B. Lomet, S. Sengupta, R. Stutsman, and R. Wang.
High performance transactions in deuteronomy. In CIDR, 2015.

[24] D. Makreshanski, J. Levandoski, and R. Stutsman. To lock, swap, or
elide: On the interplay of hardware transactional memory and
lock-free indexing. PVLDB, 8(11):1298–1309, 2015.

[25] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast
multicore key-value storage. EuroSys, pages 183–196, 2012.

[26] Microsoft. Profiling Tools. https://docs.microsoft.com/en-us/
visualstudio/profiling/profiling-feature-tour.

[27] Netlist. Netlist storage class memory: http://www.netlist.com/
products/Storage-Class-Memory/HybriDIMM/default.aspx,
2017.

[28] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. FPTree: A
hybrid SCM-DRAM persistent and concurrent B-tree for storage class
memory. SIGMOD, pages 371–386, 2016.

[29] I. Oukid, W. Lehner, T. Kissinger, T. Willhalm, and P. Bumbulis.
Instant recovery for main memory databases. In CIDR, 2015.

[30] A. Prout. The Story Behind MemSQL’s Skiplist Indexes.
http://blog.memsql.com/
the-story-behind-memsqls-skiplist-indexes/, 2014.

[31] D. Schwalb, T. Berning, M. Faust, M. Dreseler, and H. Plattner. nvm
malloc: Memory allocation for NVRAM. In ADMS, pages 61–72,
2015.

[32] N. Shavit and D. Touitou. Software transactional memory. PODC,
pages 204–213, 1995.

[33] H. Sundell and P. Tsigas. Lock-free deques and doubly linked lists.
JPDC, 68(7):1008–1020, July 2008.

[34] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell.
Consistent and durable data structures for non-volatile
byte-addressable memory. In FAST, pages 61–75, 2011.

[35] Viking. Viking technology memory and storage: http://www.
vikingtechnology.com/uploads/embedded_overview.pdf, 2017.

[36] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: lightweight
persistent memory. In R. Gupta and T. C. Mowry, editors, ASPLOS,
pages 91–104. ACM, 2011.

[37] T. Wang, J. Levandoski, and P. A. Larson. Easy lock-free indexing in
non-volatile memory. Technical report, Microsoft Research, 2017.

[38] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He. NV-Tree:
Reducing consistency cost for NVM-based single level systems. FAST,
pages 167–181, 2015.

[39] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance
evaluation of Intel® transactional synchronization extensions for
high-performance computing. SC, pages 19:1–19:11, 2013.

565

https://www.everspin.com/ddr3-dram-compatible-mram-spin-torque-technology-0
https://www.everspin.com/ddr3-dram-compatible-mram-spin-torque-technology-0
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/JimHandy_Understanding_the-Intel.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/JimHandy_Understanding_the-Intel.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/JimHandy_Understanding_the-Intel.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
http://www.pmem.io
https://docs.microsoft.com/en-us/visualstudio/profiling/profiling-feature-tour
https://docs.microsoft.com/en-us/visualstudio/profiling/profiling-feature-tour
http://www.netlist.com/products/Storage-Class-Memory/HybriDIMM/default.aspx
http://www.netlist.com/products/Storage-Class-Memory/HybriDIMM/default.aspx
http://blog.memsql.com/ the-story-behind-memsqls-skiplist-indexes/
http://blog.memsql.com/ the-story-behind-memsqls-skiplist-indexes/
http://www.vikingtechnology.com/uploads/embedded_overview.pdf
http://www.vikingtechnology.com/uploads/embedded_overview.pdf

	Introduction
	Background and Overview
	System Model and NVM
	Latch-Free Memory Safety
	Persistent Multi-Word CAS
	Durability
	Execution

	BzTree Architecture and Design
	Architecture
	Complexity and Performance

	BzTree Nodes
	Node Layout
	Leaf Node Operations
	Inserts
	Delete
	Update
	Upsert
	Reads
	Range Scans

	Leaf Node Consolidation
	Internal Node Operations

	Structure Modifications
	Prioritizing Structure Modifications
	Node Split
	Node Merge
	Interplay Between Algorithms

	BzTree Durability and Recovery
	Persistent Memory Allocation
	Durability
	Recovery

	Evaluation
	Experimental Setup
	Environment
	Evaluation Workloads

	Design Complexity
	Runtime Performance
	Durability
	Scan Performance
	PMWCAS Statistics
	Sensitivity Analysis
	Memory Footprint
	Execution Time Breakdown

	Related Work
	Conclusion
	References

