Scalable Approximate Query Processing With The DBO
Engine

Christopher Jermaine, Subramanian Arumugam, Abhijit Pol, Alin Dobra
CISE Department, University of Florida
Gainesville, FL, USA
{cjermain, sa2, apol, adobra} @ cise.ufl.edu

ABSTRACT

This paper describes query processing in the DBO database sys-
tem. Like other database systems designed for ad-hoc, analytic
processing, DBO is able to compute the exact answer to queries
over a large relational database in a scalable fashion. Unlike any
other system designed for analytic processing, DBO can constantly
maintain a guess as to the final answer to an aggregate query
throughout execution, along with statistically meaningful bounds
for the guess’s accuracy. As DBO gathers more and more informa-
tion, the guess gets more and more accurate, until it is 100% accu-
rate as the query is completed. This allows users to stop the
execution at any time that they are happy with the query accuracy,
and encourages exploratory data analysis.

Categories and Subject Descriptors
G3 [Probability and Statistics]: Probabilistic Algorithms; H.2.4
[Database Management - Systems]: Query Processing

General Terms
Algorithms, Performance

Keywords
Sampling, Online Aggregation, Randomized Algorithms, DBO

1 INTRODUCTION

Modern database systems are ill-suited to the task of ad-hoc, ana-
lytic query processing over massive data sets. For proof of this, one
needs only to look at the TPC-H benchmark results, which show
that modern hardware and software can still provide dismal, day-
long query evaluation times given an ad-hoc analytic processing
workload. Such slow speeds render interactive, exploratory data
processing an impossibility.

One way to address this performance limitation is to redesign
database architecture from the ground up to support intense, ana-
lytic workloads. A promising idea is to make randomization the
basic database design principle [11]. Under such a paradigm, a
database relies on randomized algorithms that immediately give an
approximate and statistically meaningful guess as to the eventual
query result. If the user is satisfied with the accuracy, or the guess

Material in this paper is based upon work supported by the US National
Science Foundation under Grant Nos 1IS-0347408 and IIS-0612170.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD 07, June 12-14, 2007, Beijing, China.

Copyright 2007 ACM 978-1-59593-686-8/07/0006...$5.00.

725

shows that the question will likely have an uninteresting answer,
then the computation can be terminated. However, if the query is
allowed to run, the guess becomes more and more accurate as the
database system processes more data. If necessary, the user may
simply decide to wait until an exact answer is obtained.

This paper describes the design and implementation of the query
processing engine of a prototype database system based on such a
design, called Database-Online or DBO. DBO takes as input a
SELECT-FROM-WHERE-GROUP BY aggregate SQL query over a
number of disk-based, input tables. Like a traditional database sys-
tem, DBO computes the exact answer to the query in a scalable
fashion. However, DBO is designed to make use of novel, random-
ized algorithms that not only allow it to compute the exact answer
to the query, but also allow it to maintain a guess (with accuracy
guarantees) as to the final answer to the query at all times.

DBO demonstrates that by modifying certain basic principles of
database system design, it is possible to have the best of both
worlds: a database system that can process large data sets effi-
ciently, but also supports interactive data exploration through fast
and accurate approximation.

An Unsolved Problem: Scalable Online Approximation

The design and implementation of such a system presents a chal-
lenging set of research problems. Hellerstein, Haas, and Wang first
proposed an idea along these lines in their 1997 paper describing
online aggregation [11], and later showed how to evaluate joins so
as to give accuracy guarantees during query execution (with the
introduction of the ripple join [6]). This work was later extended to
a parallel environment [15]. However, a problem with this work is
that the proposed algorithms are not scalable. As soon as enough
data has been processed that they cannot all be stored in main
memory, it is no longer possible to provide statistical guarantees.
This is a significant limitation of this early work. As we show
experimentally, available memory may be consumed after only a
few seconds, and yet the accuracy may still not be acceptable.

In response to this, Jermaine et al. [13] showed how to make
online estimation scalable, and described a generalization of the
ripple join called the SMS join that gives an estimate with statisti-
cal accuracy guarantees from startup through completion. How-
ever, a problem with the SMS join is that it is generally only
appropriate for joins over two large input tables. This is problem-
atic because the greater the number of input tables, the more diffi-
cult it is to produce an accurate, approximate answer quickly. Each
additional input table typically increases the inaccuracy of the
obvious estimators in a multiplicative fashion. Thus, the more
input tables to a query, the more likely that a scalable algorithm
will be required to process enough data to give an accurate answer.

Our Contributions
DBO specifically addresses these limitations and demonstrates a
new paradigm for analytic processing. DBO is able to complete the

answer to arbitrary select-project-join query plans in a scalable
fashion, and can provide for statistical guarantees from startup
through completion. There are many technical innovations in
DBO’s query processing engine, including: (1) a redesign of the
traditional query processing engine to facilitate information shar-
ing across relational operations; (2) a novel scheme for producing
join tuples in a randomized fashion that facilitates statistical guar-
antees; (3) a deep mathematical analysis of the engine’s statistical
properties that generalizes existing analysis [6][13] to different
types of randomization and queries; and (4) derivation of unbiased
estimators for estimate quality that allow analysis of queries over
arbitrary numbers of tables.

2 WHY IS THIS HARD?

The problem of combining scalability and online estimation is dif-
ficult. In order to achieve scalability, a database system must rely
on careful movement of data between memory and disk. On the
other hand, in order to perform statistical inference, a system must
rely on randomization. Obviously, these requirements are in direct
opposition to one another: How is it possible to achieve careful
organization and randomization at the same time? In this Section,
we discuss these difficulties in more detail.

2.1 The Ripple Join

The most well-known algorithm for performing online estimation
over multi-table queries is the ripple join family of algorithms [6].
In our discussion of the ripple join (and of all of the algorithms
considered in this paper), we assume a TPC-H-style query of the
form:

SELECT n.name, SUM (...)

FROM customer c, orders o, lineitem 1,
supplier s, nation n, region r
WHERE c.custkey = o.custkey AND
1.orderkey = o.orderkey AND
GROUP BY n.name

Or more generally:

SELECT SUM (f(r;er,e...
FROM R; as rq,

orn))

Ry as rp, ..., R, as r,

In the above expression, e is the concatenation operation, which
appends one tuple to another. f can encode any relational selection
or join predicate over the input tuples, and can also encode a
GROUP BY by selecting tuples only from a specific group.

The ripple join works by reading an ever-larger sample of each
input relation in a sequential fashion, and using those samples to
estimate the final query answer. As the sample grows, the algo-
rithm outputs estimates of ever-increasing accuracy. The fact that
the portion of the data space used to compute the estimate grows
from the lower left to upper right corner of the data space leads to
the name “ripple join”.

However, the algorithm is not scalable. Assuming a hash ripple
join, at the point that the join can no longer buffer all of the sam-
pled records in main memory, it becomes necessary to page out
one or more records to make room for a new record, and to page in
other records in order to check for matches with the new record.
These I/Os will be random due to the random order of input tuples,
so the algorithm causes severe thrashing. Even if each new record
that is processed requires only a single random disk I/O, the pro-
cessing rate will be only around 10,000 records/minute/disk (with
a 3ms random I/O time), with no easy way to address the problem.

726

2.2 The SMS Join

In response to this, Jermaine et al. proposed the sort-merge-shrink
Jjoin, a scalable join that is able to maintain online, statistical esti-
mates throughout query execution [13]. The SMS join is closely
related to the classic sort-merge join [19], except that during the
sort phase of the SMS join, all of the input relations are processed
concurrently in order to provide a guess as to the final query result.
Unfortunately, the SMS join has problems scaling past two rela-
tions. Imagine that we want to answer the query:

SELECT SUM (Rj3.c)
FROMR;, Ry, Ry
WHERE R;.a = Ry.a AND Ry.b =R3.b

Like the SMS join, virtually all modern, scalable join algorithms
use a two-phase model, where data are first hashed or sorted into
buckets or runs and written back to disk. In a second phase, the
various buckets or runs are joined. In the above query, it is impos-
sible to use such a two-phase algorithm to compute the answer. If
data from R, are sorted or hashed on attribute R,.a, then the result-
ing buckets or runs cannot be joined directly with R3 without re-
sorting or re-hashing (because the join with Rj is on the attribute
R,.b and the records will be sorted on the wrong attribute). If the
data from R, are sorted or hashed on attribute R,.b, then R, cannot
be joined directly with R;. Such a query must be implemented
using two separate joins, and it is far from clear how two joins can
be combined in the SMS framework.

2.3 Fixing the Problem?

Unfortunately, all obvious ideas for addressing this problem
encounter difficulties. One idea is to use some sort of scalable “fast
first” join algorithm [4][5] to process R;PXIR,, and to pipeline
result tuples from the first join into a second SMS join with Rj.
However, there are problems associated with this approach. For
example, almost any method for estimating the final query result
will require a random input ordering of tuples in order to provide
statistical guarantees. However, the output from the first join will
not have a randomized ordering, making the statistical properties
of such an algorithm very difficult to reason about. It is known that
producing such a randomized ordering is difficult [2]. Even if
tuples were produced in a randomized fashion, it is difficult to
pipeline them into another join and use that join to produce an esti-
mate for the answer to the query due to important, unknown con-
stants. For example, a ripple-join-style estimator would need to
know the size of the intermediate relation, which would be
unknown until the relation is materialized.

3 DBO QUERY EVALUATION: OVERVIEW

Because of such difficulties, designing a database system that pro-
vides both scalability and accurate estimation from startup through
completion is a daunting task. It appears to be impossible to
achieve both goals by simply plugging algorithms directly into a
traditional database engine; more fundamental design changes are
needed. The remainder of the paper describes query processing in
the DBO system, which achieves these goals by making use of
some fundamental changes in database system architecture.

The problem with traditional database engines in this context lies
with the fact that relational operations are treated as “black boxes”.
This abstraction renders accurate statistical estimation impossible
because it hides intermediate results as well as internal state from
the remainder of the system. If intermediate results are not exter-
nally visible, it is impossible for the system to guess the final

Ny

> DI X D<1/
WataVs

/\

>
\/_’
/

>
/\
> >

AT

>

><]
WAYA

R, Ry Ry RyRs RgR; Ry | Ry Ry Ry RyRs Rg R, Rg
(1) Original query plan (2) All bottom-level joins
evaluated concurrently in
<] N, levelwise step #1. This step
/ produces the estimator N;
Rip Rayy Rsg Ryg / \

/N

Rs¢ Ryg

AN

Ry Ry

(4) All bottom-level joins
evaluated concurrently in
levelwise step #2, producing

the second online estimator N, (3) Remaining query plan

/N\ N3
Rip34 Rs678 /N\
(5) Remaining query plan R34 Rs678

R (6) Final join evaluated in
12345678 levelwise step #3

(7) Result relation g

Figure 1: Levelwise query evaluation in DBO.

answer to the query because no entity has access to information
about every input relation.

In order to provide for accurate online estimation, DBO’s execu-
tion engine is quite different. All of the operations at a single level
of the query plan are faken together as the basic query-processing
abstraction. The operations executed at a single level in the query
plan are together referred to as a levelwise step. All of the opera-
tions within each levelwise step execute concurrently and share
information with one another. The reason for this is simple: assum-
ing for the time being that all leaves of the query plan are at the
same level, then by definition, all of the operations at a single level
of the query plan have access to enough information to compute
the final answer to the query. Actually computing the final answer
may take hours or days. But by carefully allowing each operation
to share some of its intermediate results with all of the other opera-
tions at the same level, it becomes possible to look for preliminary
result tuples in order to guess the final query answer.

The process of evaluating a query from startup through comple-
tion in DBO for a given query plan is depicted in Figure 1. In this
example, DBO’s engine begins by executing the first levelwise
step, where each operation at the bottom level of the plan is evalu-
ated concurrently. At all times, this step maintains an online esti-
mator N, for the final answer to the query by passing information
among the various constituent joins. As the levelwise step
progresses, N; achieves more and more accuracy. Eventually, it
becomes frozen as the step completes. The resulting relations are
used as input to the second levelwise step, which produces an
online estimator N,. At all times, N, is combined with N; to pro-
duce a single estimate for the final answer to the query. Finally,
after the second levelwise step ends, the last levelwise step is exe-
cuted, which produces an online estimator N5. Again, as this step

727

progresses, N3 is combined with both N| and N, (now both frozen)
to produce an estimate for the answer to the query. As the end of
query execution approaches, N3 will approach (and eventually
become equal to) the correct query result.

4 THE LEVELWISE STEP

As described above, all of the joins at the ith level of the query plan
are evaluated concurrently in DBO, and all of the joins that are
concurrently executed are collectively referred to as a levelwise
step. The concurrent evaluation is necessary in order to provide a
running estimator for the eventual answer to the query throughout
execution, since it ensures that at least some information about
every relation is always in memory.

In the DBO prototype, each individual join is implemented as a
modified sort-merge join, though use of a sort-merge join is not a
fundamental requirement. It would also be possible to modify
other scalable, two-phase join algorithms for use (see the discus-
sion in Section 10), though this is beyond the scope of the paper.

Whatever two-phase join algorithm is used, the joins that make
up a levelwise step must be carefully coordinated to share informa-
tion among one another so that an estimate for the final answer to
the query can be maintained. This results in the partitioning of a
levelwise step into two phases: a scan phase and a merge phase.
These two phases are described now in the context of the sort-
merge join employed by the DBO prototype.

4.1 The Scan Phase

The scan phase of a levelwise step is analogous to the sort phase of
a sort-merge join or the hash phase of a hash join except that the
phase is executed concurrently for all of the joins that make up the
ith levelwise step. There are several other key characteristics of the
scan phase of a levelwise step:

(1) Immediate discovery of output tuples. In a manner similar to
the ripple join [6], at all times, the subsets of tuples stored in
memory from all relations are checked to see if they can be
joined to discover any output tuples immediately, which are then
used to guess the eventual answer to the query.

(2) Randomized sort order. In order to ensure that the statistical
properties of the estimate produced by examining those output
tuples are reasonable, the tuples must be input in a randomized
order. As we discuss below, this also implies the output of the
scan phase must be in a randomized order.

(3) Round-robin processing of runs. In order to provide for
greater accuracy, runs are processed in a carefully choreo-
graphed, round-robin fashion. This round-robin processing of
runs leads to a “zig-zag” pattern that allows the algorithm to
produce a low-variance estimator, as we will discuss subse-
quently.

The scan phase of a levelwise step is implemented as follows:

(1) As the phase begins, one run of records from each relation is
read into memory from disk (or, since levels are pipelined, the
records are taken as input directly from the previous levelwise
step). Once one run from each input relation is present in mem-
ory, all of the records are immediately joined in order to search
for any result tuples. As is described in Section 5, these result
tuples are used to obtain an unbiased guess for the query answer.

(3) Assuming an arbitrary ordering for the input relations, in the
next step, the run from the “first” relation is sorted and written
back to disk, just as in a sort-merge join. However, there is one
important difference. If R; is to be joined on the attribute R;.key,

Result tuple discovered

Sorted on H;(B)
on-the-fly

1"?1) R3 Ry Rj) Rj3 Ry Ry R, R3 Ry
AB CDE FG HI AB CDE FG HI AB CDE FG HI
RIEHTIGIA [11119] [8[9]5 8[7[4] [7[115]4] [II1IO} [8[9]5 8[7[4] [413]1]0] [1[1[9] [8[9]5
110151 [0I51415N\ [71210] [770[4 917[4| [0]5[4[51/17]2]0[\|7]0]4 9|714| [6]4][9]3] [7]2][0] [7]0]4
9[7(4 4310\252 114]9 110]5] 141311101 [215]2] Y1]4]9 110[5] [7]1]5]4| [2[5]2] [1]4]9
2[918] [6[4[9]3] B[O THOB[2 298/6493 5[0[1] [0[3]2 2[98| [0[5[4[5] [5[0[1] [0[5]2
5[5[9] [1[7[2[7] [8[0I1] [O12/1 50500y [1[712[7] [8[0[1] [0[2[1 5[5[9] [1[712[7 [8[0[1] [0[2[1
214[0] [8[27[1] [6]97] [3I7[3 2[2[0] (81217111 [6[017] [BI713| (,, [2[4]0] [8[2[7[1] [6[9[7] [3[7[3] (o)
olol8| [5[8[3[9] [4[3]3] [4[9[8] @ 919(8] [5[8[3[9] [4[3[3] [4[9[8 o[o[8] [5[8[3[9] [4[3[3] [4[9[8
4[8[1] [O[1[8[8] [3[4[8] [2[50 418[1) [9[1]8[8] [3]4[8 [2]5]0 418[1] [O[1]8]8] [3]4[8] [2[5]0
e H©!) He! B 0@ H©! Hy©! Hym®! e H©!) Hye!t B!
Rl R2 R3 R4 Rl R2 R3 R4 Rl Rz R3 R4
AB CDE FG HI AB CDE FG HIT 224 22?0 sczso g%l
714] [413[1]0] [7]2 I

S714] [612[913] (41511 (701 S714] [e[ao3 (21011 (ot 01714 [6]2[0[3] [3[01] [7[014
10/5] [7[1[514] [2[5[2] [1[4[9 [[0[5| [7[15]4] [2[512] [8[915] Run1 IO [7[1[5]4] [2[5[2] [8]9[5
2[918] [0[5[4]5] [1[119| JOI3[2 20918 [0[5[4]5] [1[19] [1/49 219181 [015/4[5] (119l [1/4[0
50509 [1[712[7] RIO[LY 02T 15101 (1171217 [BIOTHORTT] Run2 [2140] [8[2[711] [8[0[1] [2[5[0
21410] [812[7[1] /[6]917] [3]7]3 21410\[812[7[1] /[6]9[7| 31713 418[1) [1[7]2]7] [4]3]3] [0]2]1
sroral oraisto/ a3 Biasl @ PRRNSERDRY k0 APE © oo o (oo 373 O
21311 OIS (31418 (250 4131 1 \OLLBIRINZIALRY 21510 55§ 583§ 34§ 498
H®!) H©O! Be! Ho! H®! O Hy©)! H®! 0! 1O e B!

Figure 2: Scan phase of a levelwise step. In this example, we assume an SQL query having the where clause “WHERE R;.B=R,.C
ANDR,.E = R3.F AND R3.G = R;.H”, and we assume that the first levelwise step computes the joins R;><R, and R3><Ry. In the
scan phase, a run from each input relation is first read into memory. In our example, we have enough memory to hold four tuples
from each relation, and the in-memory tuples are shaded. Next, these runs are immediately searched for any tuples that match the
final WHERE clause, and any such tuples are immediately used to estimate the answer to the query (a). Then, in round-robin fash-
ion, in-memory runs are sorted based on a hash function associated with each join (H; for R{><R, and H, for R3><R,) and written
to disk; after a run is written to disk, it is immediately replenished with the next run from the appropriate input relation (b)-(e).
At all times, any discovered tuples that match the final WHERE clause are used to help estimate the final query result. The process
is repeated until all input relations have been broken into runs and sorted using the hash function (f).

it is not sorted on Rjkey directly. Rather, it is sorted on the
value of H(id, R;.key), where H is a randomizing or hash func-
tion that takes the value id as a seed; in order to make sure that
none of the orderings are correlated, a different seed is used for
each join. This hashing is performed so it is possible to guaran-
tee a random output order for tuples from the subsequent merge
phase: if the sort order is chosen based upon some randomized
lexicographic ordering of the input tuples, tuples will be output
in an order that is statistically independent of all of the output
records’ attributes (except for the join attribute). This random-
ized output order means that the output tuples can then be used
as input to a join in the next levelwise step.

(3) After the records from the first run of the first relation are
written back to disk, the next set of records from the first rela-
tion are read from disk (or taken directly from the previous
merge phase if pipelined). They are immediately joined with all
of the other tuples currently in memory. Then, the first set of
records from the second relation is sorted using H and written
out to disk to make room for the second run of records from the
second relation. This second run is read in and immediately
joined with all of the other tuples in memory. This processing is
always performed in a systematic, round-robin fashion: first a
run from R, is read and processed, then a run from R, is read
and processed, and so on; after a run from the last relation to be
joined at level i is read, the next run from relation R; is read, and
the cycle begins again. An example is depicted in Figure 2.

4.2 The Merge Phase

The merge phase of the joins making up the ith levelwise step is
very similar to the merge phase of a traditional sort-merge join,
except that the various merges of all of the joins are run concur-

728

rently. That is, the head of each run of each input relation to the it
levelwise step is read into memory, and runs of records from each
output relation are produced in a round-robin fashion in order to
pipeline the result records directly into the scan phase of the joins
making up the (i + 1" levelwise step, without ever writing records
back to disk. Since the scan phases of the joins making up the (i +

™ levelwise step all run concurrently, so must the merge phases

of the i levelwise step. An example merge phase (continuing the
example of Figure 2) is depicted in Figure 3.

5 SCAN PHASE ESTIMATION IN DEPTH

The previous Section described at a high level the algorithm for
computing a levelwise step. In this Section, we discuss in detail
how to compute online estimates in DBO.

5.1 Estimating the First Time Around

As described previously, a key goal of the scan phase of each level-
wise step is to use result tuples discovered on-the-fly to estimate
the final answer to the query. In the remainder of this Subsection,
we make the assumption that each input relation R; for i from 1 to
n is fully materialized and resides on disk. However, this is only
the case in the first levelwise step. In subsequent levelwise steps,
the result of the merge phase from the previous step is pipelined
into the scan phase. We consider the extension to the pipelined
case in the next Subsection.

Let TG, j, k) = R; ;XR; ;X
step. In other words, 7(i, j, k) is the cross product of all of the
tuples in the ith run of input relations j through k. For example, in
Figure 2, T(1, 1, 4) is the cross product of all of the tuples in mem-

... X Ry ; for a given levelwise

Shaded tuples are in memory
Output so far:

Ry Ry R3 Ry
AB/ CRE FG HI Ri2 R34
817Y4| [4|3N[0] [7][2]0] [0][5]1 ABCDE FGHTI
91714] |6/4/9N3] [5]0[1] [7]0[4 [2]4]4]3]1] [7]2]2]5
110[5] [711]5[4N|2]5]2] [8]9]5 (4]8]8]2]7] [5]0]0]5
21918] |0[5{4]5| NLI1]9] [1]4]9 5[0/0[2
2[4[0] [8]2[7[1] [&O[1] [2[5]0 810105
4(8[1] [1]712]7] [4[3][3] [0[2]1 81010]2
919/8| |9[1[8[8| [6/9]7]| [3]7]3
51519] |5]8[319] [314]8] 4]9]8
He! H©! He! Hm! (@)
R, R, R, R, Output so far:
AB CDE FG HI Riz R34
81714| [4]3]1]0] [7[2]0] [0[5]1 ABCDE FGHI
9l714| [6[4913] [5/0[1] [7[0]4 214T4[3[1] [71212]5
110]5] [7[1]5]4] [2|5/2] |8/9]5 4[8/8]2[7] 15]0]0]5
21918 |0[5{4]5| [1]1]9] [114]9 817[711]5] |5[0[0]2
21410] |8]2[7]1] [8]0[1] [2]5]0 917171115] [8]0/0]5
4(8]1] [1[7]12]7] [4[3]3] [0[2]1 80102
91918] |9/1[8]|8] [6/9]7]| |3]7]3 413137
51519] |518(3]19] [3[4[8] [4]9]8
H® H©! B! Hw! (b)
R, R, Ry R, Output so far:
AB CDE FG HI Ri2 R34
8[714] [413[1]0] [7]210] [0[3]1 ABCDE FGHI
9[7(4] [6[4[9[3] [5[0[1] [7[0[4 2[41413[1] [71212[5
11015 [7111514] [2[5]2] [819]5 113181217 [5/0[0[5
21918 10[514[5] [1]1]9] [1/4]9 8[7[71115]| [5]0[0[2
21410/ [8]2(7]1] [8]0[1] [2|5]0 917171115 [8]0/0]5
4(8]1] [1]7]12]7] [4[3]3] [0[2]1 110/0[514] [8]0/0]2
919[8| [9/1]8|8| [6/9]7] [3]7|3 21919[118] [4]3]3]7
51519] [5181319] [3]4/8] [4]9]8 9[919[1]8] [314]4]9
(©

Figure 3: The merge phase of a levelwise step used to compute
Ry < R{™R, and R34 < R3><R4 for a query with the
WHERE clause “WHERE R;.B = R,.C AND R,.E = R3.F AND
R3.G = R4.H”. First, the head of each run produced by the
levelwise step’s scan phase is read into memory, and all of the
in-memory records are joined (a). Note that because tuple
processing order is defined by the hash functions H; and H,
associated with R;><R, and R3><R4, respectively, the output
order of tuples to Ry, and R34 is random and independent,
except for the clustering of tuples having an identical join key.
This allows the output of R, and R34 to be pipelined into the
scan phase of the next levelwise step. When any run’s in-mem-
ory tuples are exhausted, the next set of tuples is read from
disk and joined with those in memory (b). The process is
repeated until all of the level’s joins have been completed (c).

ory in step (a); since there are four runs in memory and each run
has four tuples, 7(1, 1, 4) will contain 256 tuples in all. Thus, after
r runs have been processed from each relation by a levelwise step,
the following is equivalent to the sum of the aggregate function f
over all tuples that have been discovered:

a=Y_[¥ rwls

te T(a,1,n)
DINRD Y

Since it is equi-probable that any given tuple may be discovered
during the scan phase, by simply scaling up, this summation can

Fliys zz)]]

|:t| e T(a,l, b)[z2 eT(a-1,b+1,n)

729

easily be used to calculate an unbiased guess as to the final answer

to the query. Let B be the ratio of the size of the overall data space
to the number of tuples considered by the scan phase; that is:

[RiXRyX...XR,|
B = p n-—1
zgzllT(aaLn)l"_ z 2 |T(a9 1,b)||T(a—l,b+l,n)|

a=2b=1

Then of is an unbiased estimator for the final answer to the query
(see the Appendix of the paper for a proof). In the remainder of the
paper, we will use the notation N, to denote the estimator associ-
ated with the scan phase of the ith levelwise step.

In general, it is not enough to be able to give an estimate; it is
also vital that we be able to characterize the accuracy of the esti-
mate. This characterization via a derivation of the variance of N;
(denoted 67 (N;)) is considered in Sections 5.5 and 7.

5.2 Estimation at Subsequent Levels

The estimation procedure for levelwise steps other than the first
one differs for two reasons. First, intermediate tuples are produced
by a merge phase only in semi-random order; tuples with the same
join key are produced all at one time in a group. For example, con-
sider Figure 3(a); all tuples with join key O appear at the same time
in relation R34. Second, cardinalities of intermediate input rela-
tions are not known as an intermediate levelwise step is computed.
This is because the levelwise steps are pipelined: the results from
the merge phase of the i step are used immediately by the scan
phase of the (i + 1" step, before the input relation has been fully
materialized. The estimation and variance computation procedures
must take into account these properties.

To handle the grouping problem, we use a variation on the idea
proposed by Haas to remove the correlation induced when sam-
pling blocks of tuples rather than tuples [7]. We view each group of
tuples that all have the same join key and have all been produced
by the same merge phase as a single, indivisible output tuple,
which we subsequently refer to as a “clump”. Imagine that tuples
ty, ty, ..., t, from intermediate relations 1 through n are actually

“clumps” or sets of tuples, where all ¢;” € ¢, have the same join

key. Then to compute f(t; ®z,e ... et) during both the estima-

tion and variance computation process, we simply use:

flyoye oty =N N N ft) ey e 01))

t/et t,yet, t’et,
This removes any correlation induced due to the grouping and the
clumps are, in fact, produced in random order.

To handle the fact that we do not know the size of the intermedi-
ate relations, we note that the tuples output from a join will appear
in sorted order, based on the result hash function H(R. a). Rather
than choosing the size of each run beforehand, we choose the num-
ber of runs (or partitions) p and break the output space of H into p
contiguous, (approximately) equi-sized ranges of key values. For
example, if the range of H(R.a) is from O to (231 - 1), then we
might break the range of H into [0 to (229 - 1], [229 to (230 - D],
239 t0 222 + 230 - 1)}, and [2% + 239 10 (23! - D] if p = 4.
Assuming equi-sized ranges, each “clump” of output tuples pro-
duced by the join then has a probability of 1/p of falling into a
given run, and the sampling performed at all levels except for the
first is Bernoulli or “coin-flip” sampling. As a result, the unknown
size of the relation is unimportant, since we can scale up any esti-

mate produced using the records in memory by p” to obtain an
unbiased estimate for the eventual query result (this is because we

have a 1/p sample of each of the n relations that are input into the
levelwise step). Since the summation o used to compute N; con-

tains 1 + (r - 1)n estimates (see Section 6.1), the scaling factor:
il
B = 1+ (r - Dn
can then be used to produce an unbiased N; for any scan phase
receiving pipelined input tuples.

5.3 Estimation At the Last Level

Tuples output from the join in the very last levelwise step are used
as input into a final estimator Ny, where d is the depth of the
query plan. N, ; is computed in exactly the same way as the esti-
mator described in the previous Section. The tuples output from
the final join are broken into p partitions, and after p partitions
have been processed, the sum o of all tuples discovered is multi-
n
; - D
plled by B = m
in the case of the final join).

(which is equivalent to p/r, since n = 1

5.4 Estimating the Final Answer to the Query

An unbiased statistical estimator for the eventual answer to the
query is associated with the level, and maintained online. The ran-
dom variable N characterizes the statistical estimator associated
with the scan phase bottom-most level of the query plan, and N is
associated with the tuples output from the merge phase of the top-
most levelwise step (that is, we have a query plan that is d levels
deep). Thus, at any given moment, there are a number of estima-
tors available, one associated with each level of the plan. Each
gives an independent estimate for the final query answer.

Since there are d + 1 estimators in all (one associated with each
level in the query plan, plus one for the final output) they must be
combined to form a single estimate for the final result of the query.
Since each N; is unbiased (see Section 7), it follows that for

{Wy, ..., wy 1} where de
ased estimate for the final answer to the query:
d+1
N o= 301wl

Furthermore, since DBO’s query evaluation engine computes each
N; so that they are all statistically independent (since each level
uses an independent random ordering), it is the case that:

= 1, the following is an unbi-

02(N) _ 2d+1 2 (N)

In order to minimize the error associated with N, we seek to min-
imize the variance of N over all possible weights. It can easily be

shown using Lagrangian multipliers that 02(N) is minimized (and
hence the accuracy of N is maximized) by choosing:

- 1wz S|

G"(N))
5.5 Providing Confidence Bounds

Once the value of N and 02(N) have been computed, it is then an
easy matter to associate confidence bounds with the quality of the
estimate of N using standard techniques [3], such as assuming that
N is normally distributed (justified by the central limit theorem
(CLT) [20]) or by using distribution-free bounds such as those pro-
vided by Chebyshev’s inequality [9]. In our implementation, we
use CLT bounds, which, as we show in Section 8, seem to give

730

good results. However, what we have ignored thus far is how to

. 2 . N
compute (or estimate) 6~ (N;) for any given i. If i = d, then after r
of p partitions have been processed, the variance is computed as

6 (N,) =

2
EINJI-E*[N,] = E[(Zir’x,f(tj))]—EZ[I—ZZXjf(tj)]
where X; is a zero/one random variable indicating Whether the jth
tuple in the topmost relation of the query plan has been found in
any of the first r partitions produced by the DBO engine, and ¢; is
the jth result tuple. Note that E[X;] = r / p, and using the “Clump-
ing” strategy of Section 5.2, each X;, X; pair is independent and so

E[X;X;] = 2/ p2 . Then simplifying 02(N 4)» we have:
2 2 p2 r 2
(N = 2 £+ 2 e -L(XLray)
rN
4 r r 2
——2[2 £ - 2 f(t)] -5 sy
J

This value can easily be estimated by simply taking the sum of
the square of the aggregate function f applied to each result tuple
that has been found thus far, and multiplying the result by

2
22-(1 - K) to account for the fact that we have (on expectation)

p
r

seen 1/p of the tuples of the final result relation. Estimating

02(N ;) for i #d is more complicated, and left to Section 7.

6 ADDITIONAL CONSIDERATIONS
6.1 Why Use the Round-Robin Approach?

Recall that the scan phase cycles through the relations. For every
relation, the current run is written back to disk, the next run is read
in, and the query result is re-estimated. This approach can deliver
very high estimation accuracy. The reason is that given n input
relations each broken into p partitions or runs, it is possible to

search a fraction (1 +n(p-1))/ p" of the data space during the
scan phase. For example, consider Figure 4 above, where a level-
wise step is computed over three input relations, each broken into
three runs. In total, the round-robin approach searches
1 +n(p—1) or 7 combinations of runs for result tuples, out of 27
combinations total. This is due to the fact that there is one combi-
nation that makes use of the first run from the first relation; there
are then n different combinations that make use of each of the sec-

ond through p’h runs of the first relation. On the other hand, if we
had searched for result tuples only after a new run had been read
from every input relation (as the SMS join does), we would have
considered only three combinations of runs.

6.2 Choosing the Number of Runs

One problem is how to choose p. The goal is to choose the smallest
number of runs possible, because the fewer the number of runs, the
more tuples in memory at any given instant, and the better the esti-
mation accuracy. Since one run from each relation must fit into
memory, in the first levelwise step, p is chosen by summing each
input relation’s size, and dividing by the available main memory.
At subsequent levels, choosing p is more difficult because the
input relations are not materialized before they are processed, so
the size of each input relation is unknown. To handle this, the scan
phase at each levelwise step other than the first begins by reading

o

RST RST RST RST RST RST RST
Figure 4: Using the round-robin method, seven combinations
of runs are considered when relations R, S, and T (each broken
into three runs) are sorted during the scan phase of a levelwise
step.

tuples from each input relation so that the range of the hash func-
tion H is processed at a constant rate for each run. That is, if there
are two relations to be processed, the scan phase should complete
the processing of the first k% of H’s range for both input relations
at roughly the same time, for every k. At the point that the available
main memory is (almost) consumed, p is chosen to be | 1/k | for
the remainder of the levelwise step. Because the set of records
from each relation that appears in the first k<% of H’s range is a k%
Bernoulli sample (without replacement) of each relation, and each
subsequent k% of H’s range is also a k% Bernoulli sample of each
relation, their corresponding runs will be (roughly) the same size.
Thus, if the first run from each relation fits into memory, the sec-
ond is likely to as well.

6.3 Handling Data Skew

Like any database system relying on hashing, the DBO system is
sensitive to data skew. There are two consequences of this. First,
using the method from 6.2 for choosing p, if we are very aggres-
sive and choose a small p, then subsequent partitions may be too
large to fit into memory. If this happens, we freeze N; (as well as its
variance estimate) for the remainder of the current scan phase, and
run the offending scan phase just as one would run the sort phase
of a set of classical, sort-merge join. After the problem scan phase
completes, the remainder of the levelwise steps can be executed
normally, and updates to the estimates resume. The cost of this is a
temporary freeze in updates to the DBO system’s estimates.
Second, skew in join key values can also affect the accuracy of
the resulting estimator. Fortunately, as long as the method for han-
dling “clumping” from Section 5.2 and the variance estimation
methods from Section 7 are used, the DBO system will take into
account this drop in accuracy and still report correct confidence
bounds; they will simply be wider than if there had been no skew.

6.4 Handling GROUP BYs and Other Aggregates
GROUP BY queries can trivially be handled within the DBO frame-
work by using a separate “query” for each group. All of these que-
ries can be run concurrently with little additional overhead. A
relational selection predicate that accepts only tuples belonging to
a given group is added to each query. Other aggregate functions
such as AVERAGE and STD_DEYV can also be handled easily, since
these are simply functions of multiple SUM queries. For example,
AVERAGE is the ratio of a SUM and a COUNT (which is itself a
SUM query).

6.5 Handling Inconvenient Queries

Thus far, we have assumed that DBO’s query processing engine is
always used to process queries that have been compiled into a
bushy query plan. The reason for this assumption is that unless a
levelwise step is able to access a random subset of the records from
each one of the input relations (or at least access temporary rela-
tions that contain records derived from each of the input relations),
the engine cannot provide for an early guess as to the query result.

731

SELECT SUM (R.a) (@) > (b) > (o)
FROM R, S, T, U \
WHERE R.A =

S.A AND > u P T

RBZT].BAND /\ /\ \

. . bM<oT B Y
[N 4N Y

R.C =
R S
Special scan
and re-randonize operator

Figure 5: Handling a star-join query. The example query (a)
would typically be evaluated using a left- or right-deep plan in
a traditional system (b). In DBO, the plan must be augmented
with three additional table-scan operations to ensure access to
all input data at each levelwise step (c).

However, a query may be processed that cannot be compiled into
a bushy tree. This may happen, for example, when a fact table is
joined with several smaller, dimension tables. Consider the query
of Figure 5(a). If we wish to avoid materializing the result of a
cross product, the only plans for this query are linear and non-
bushy, because relations S, T, and U must all be joined with R.

There are several tactics for dealing with this. In our prototype,
we require a scan and re-randomization of all of the relations that
are “active” during a given levelwise step. This is depicted in Fig-
ure 5(b) and (c), where the “normal” query plan for the SQL query
of Figure 5(a) has been augmented with three additional operations
that do nothing more than read the input tables and write them out
in a re-randomized order. The re-randomization is required so that
estimators associated with subsequent levelwise steps are not cor-
related. The result is that R, S, T, and U all take part in the scan
phase of the first levelwise step, even though T and U are not joined
in this first levelwise step. Their tuples are all read in concurrently,
just as in the scan phase depicted in Figure 5, and any result tuples
that are discovered are immediately used to produce an estimate.

The obvious cost associated with this technique is that the input
relation T is processed multiple times. However in practice, this
may make little difference. First, this situation is encountered most
often in a “star-join” scenario where the table that is repeatedly
joined is much, much larger than the others, such as when it is a
warehouse fact table. In this case, the additional cost of scanning
one or more dimension tables more times than are needed may be
negligible. Second, it will often be possible to ensure that the ini-
tial scans of relations like T and U are not wasted, by combining
the scans with projection or selection operations found in the query
that can substantially reduce the table size.

7 STATISTICAL CONSIDERATIONS

This Section gives a formal, statistical analysis of the estimators
associated with each levelwise step, with a particular focus on

. . . . 2 .
developing practical, unbiased estimators for 6™ (N,) (that is, the
variance of the estimator associated with the ith levelwise step) for
the case where i #d + 1.

7.1 Notation

In this Section we introduce the notation used in Section 7. Let
Ry, Ry, ..., R, be the n relations that are the arguments of the
aggregate query and let f() be the aggregate function that is
summed over each tuple in the cross product of the input relations
to obtain the value of the aggregate query, as described in Section
5. We will always use the notation #; and ¢, to denote tuples from
the relation R; (that is, if the subscript associated with a tuple is i,
then it is assumed that the tuple came from relation i) and we use

the convention that the argument to the aggregate function f can be
specified as a set of tuples (one from each relation) in any order;
we assume that the ordering and concatenation are performed
automatically. We use the notation R;” to designate a sample of the
relation R differing slightly from the body of the paper.

Following the convention of the paper describing the SMS join
[13], we will formally analyze samples from relations by introduc-
ing zero/one random variables that indicate whether a tuple
belongs to the sample or not. To this end, we will use the notation
X i, o designate the random variable that takes value 1 when
t € Ri' (that is, the tuple #; is in the sample of R;), and value O
otherwise. These random variables allow sums of the form
Ztie R f(t;) to be rewritten as Z[’E R, X,[f,).

Since we are dealing with general aggregate queries over joins,
the theory will inevitably get complicated. To alleviate this prob-

lem we introduce special notation to represent the terms that
appear in the analysis. We use P(n) to denote the power set of the

set {1..n}. Foraset S € P(n) we use 2“_6 Rjie 5} to denote the

multiple sums z z Z
1 € R; &mil; € R, f; €R,

e Tk

where S = {il’ i2, ceey

i;.}. With this notation, the aggregate over the cross product we are
trying to compute with the DBO system can be written as:

Z{t,e Rjjie {1...n}}f({ti|i e{l..n}}) =

Zzle RIZIZE Rz'"Zt"e Rnf(tl oiye...01)

7.2 Analysis of N;: the First Levelwise Step

We begin with a formal analysis of the bias and variance of the
estimator N associated with the first levelwise step. As discussed
in Section 5.1, the estimator in the first levelwise step is based on
sampling without replacement from the relations (note that a dif-
ferent analysis applies to subsequent steps). We assume that each
relation is randomly partitioned into p equi-sized parts. We begin
by showing that the estimator described in Section 5.1 is unbiased.

7.2.1 Analysis of Expectation

The idea behind the process used in the scan phase is simple: eval-
uate the aggregate over the cross-product of the samples and scale
up the result to compensate for the difference in size between the
samples and relations. In the first levelwise step, every time a new
run is loaded into memory, all result tuples present in memory are
immediately joined and used to produce such an estimate. N is
then essentially an average of all of the estimates that have been
produced thus far; since each of these estimates has identical statis-
tical properties, we refer to an arbitrary instance of such as esti-
mate as X. The estimate X can be written formally as:

n
X=p ZIIERI’the Rz""ztne Rn’f(tl °ie ... Otn)
n .
=P Z{zie R/|ie {1..‘n}}f({ti|l€ {1...n}})
n
" .
=P Dinenjie (1o L%, Fn)ie {1n}])
i=1

In order to analyze X, we first need to specify properties of each
X, . Since each tuple is sampled independently, the random vari-

)]

ables for different values of i are independent, which means that
the expectation of the product over X, values is the product of

expectations. Thus, for any tuples 7, t,”, we have

732

I/pift, =1t/
E[X,]=1/p:E[X, X, 1=1 1R|-P. /
R
=5, 1 1[R{-p
= 8[‘., ti,; + (] - 8)/‘1’ ti’)?lRil 1
= 2—1__[(|R,-| -p)+ |Ri|(p— 1)5% [/_,]
PI(R|-1)

where we used the fact that the expectation of a zero-one random
variable is equal to the probability that the variable is one. Note
that these formulas are versions of the formulas derived in the

paper describing the SMS join [13]. 8:,., 1 is the Kronecker delta
symbol that is equal to one if #; = ¢;” and zero otherwise; express-
ing cases using St_,,_/ transforms an “if” statement into an alge-
braic expression, a‘nc,l simplifies the analysis.We will use the fact
that for any function g, zjg(i, j)Sij = g(i, i) since the terms

with i # j have a zero multiplier. We can now show that X is unbi-
ased:

Theorem 1: Unbiasedness of X:
E[X] = Z{z[e rjic {1“_”}}f({zi|i e {l..n}})
i.e., X is an unbiased estimator for the final answer to the query.

Proof: The proof uses linearity of expectation and the indepen-
dence of the random variables X, for various values of i (i.e. the

expectation of products is product of expectations). We then have:

E[X] = an{t[€ Rjie {1..n}} HE[Xli] f({[i|iE {L..n}})

i=1

= z{tie wfic (1 ST e {1n3D)

. 1

since HE[Xt,-] =—. u]
i=1 p

7.2.2 Analysis of Variance

We now address the problem of computing the variance of X,

denoted by GZ(X). Since GZ(X) = E[Xz]—Ez[X], we need

only address the problem of computing E[X?] since E[X] is given

above. We first need the following technical result:

Proposition 1: For arbitrary values a; and b;, i€ {1...n}:
(H ai+b[5t_’t_/)><
{;e Rijie {1.n}}{1/ e Rie {1..n}} ie {1..n} o

FANIELD
2
£, rj})]

>

. o€
{tje Rj|je S}

- 3 Tl 3|

SeP(n)jc g€ jes {te Ri‘ie St

Proof: The main idea is to introduce the following set of functions:
F({t,t/|(le {k+1...n)}) =

(H a;+b;d, ,_,)x
{;e Rjic {l.n}} {1/ e Ric {1..n}} Nie {1..n} o

VISR VCTAR Y

and to show by induction that:
F({tpt/|(le {k+1...n})}) =

>

e P(n)je s€

Mely ¥ |

jes (e R,‘ie St

>

{r;e R|je S
{t;e Rj‘je SC}
Details of the proof are omitted due to space constraints. O

f({t[’ tj7 l[})j| X

VST t,’})]

This now allows us to prove the following result:

Theorem 2: Second moment of X:

IS]
e T Rl
SEEP‘(n)[Hie {1..,n}|Ri| _1[15_];9| ll Hc | ll

ieS

2
2 [2 f(tp tj)] j|
{t;e R;]ie S} {r;eRj|je sc}

Proof: The result follows directly from Proposition 1 by observing

E[X’] =

that, by the linearity of expectation and properties of X, , E[X?] is
the expression on the left of the identity in Proposition 1 as long as
[R) -7 K- 1)
1 1
al- = |R|—l andbi = “]‘ET:T.D
L L
Using this, the variance of X can be readily computed.
To check this result and to illustrate its use, let us consider the

situation when n = 2, for which the variance expressions are known
from the work on the SMS join [13]. In this case we have, by

expanding ZSE P2) in the order {}, {1}, {2}, {1, 2} and denot-
ing the first relation by R and the second by S:

2. 1 _ B . 2
£UX) = e ORI - P p)(tezR 3 s v]]
+(p-DIRAs-p Y (3 feen)
teER "veS 5
+o-Disl(=l-p) Y (3 fren)
ve S teR
+(p-DRISL Y, Y e
veE STtER

By observing that the formula for the variance of X is the same as
the formula for E[X?] above except that the first term in the square
brackets has the coefficient (|R| — p)(|S|-p)—-(|IR| = 1)(|s|-1)
= (p-1)(p+1-|R|=]|g|), the formula we derived here for

02(X) and the formula in the SMS join paper are identical.

7.2.3 Extending the Analysis to V¢
Using this analysis, we can address the problem of characterizing
the variance of the estimator Ny = off from Section 5.1. First, if

each relation is partitioned randomly into p equi-sized parts, then
N; can be written as the average of a series of the X estimators con-

sidered above, each based on one sample from each relation. The
expected value and variance of each of these estimators are the
same as for X. Since expectation is linear, this implies that Ny is an

unbiased estimator of the aggregate over the cross product.
When considering the variance of N;, we observe that if

Ik o
N, = %ziz X for identical X;’s then:

2 1 <k 2 1 «k
o°(N)) = k_zzi= 0 (X,»)+k—22i¢jC0v(Xi, X))

733

where Cov(X;, X j) denotes the covariance of the two variables.

We already know how to compute (52(X ;); since each X; has an
identical variance, we simply use the formulas above.

The question is: How to compute the covariance terms? In our
prototype of the DBO system, we use the same tactic as the SMS
join [13] and simply ignore the covariances. Though space pre-
cludes presenting it here, we have produced a result similar to The-
orem 2 for the value of E [Xl-Xj], which directly leads to a formula
for Cov(X,, Xj). However, just as in the case of the SMS join, this

covariance is almost always negative. Thus, simply ignoring the

. 2 .

Cov(X,, X j) in the formula for 67 (N;) leads to an overestimated
variance. The result is that in practice, we may be somewhat pessi-
mistic in our confidence bounds. However, as argued in the SMS
join paper, such pessimism may be warranted. The reason is that it
. . 2 . .

is never practical to compute 6~ (N,) directly, and it must always
be estimated (an issue we will consider presently). Ignoring the
covariance terms may tend to lend an additional margin of error in
this estimation process.

7.2.4 Estimating the Variance

. . . 2
In the previous subsection, we determined a formula for 6™ (X) as

a function of 2" aggregates over the
R; XR, X ... XR, , each taking the form:

>

{t;e Rj|ie S}({,je R)|je R

cross product

2
Ys = S, tj})]

with S e P(n). By obtaining estimates for each of these terms, an
estimate for the variance is readily obtained.

A very simple and also reasonable estimate for each of these
terms is based on the samples R,’,R,"...R,” and is obtained by
computing the aggregate over these samples and scaling up the
result by a factor of p for each sum. More formally, Y¢ =

2
sz,[Y I, s 5-})]

{tl-E R,»‘l’ES}l’ES {I/ER/‘jESC}iES

2”—‘5‘
p

While this estimate is reasonable, it will be biased and will actually
overestimate the true value yg. Fortunately, an unbiased estimate

can be constructed from Y by observing that:

> I1eEx,1x

{t;e Rij|ie S}tie §

2
E[[3]‘[X,,f({r,-,tj})ﬂ
{1;e R)|je S}IES
. 2
. psE[(v Hx,jf({t,-,tj})j
{t,e Rjie S} {1je r)|je s}ieS

We now observe that each of the expectation terms within the sum

2" 1|8
Elyg =p° "

can be determined using Theorem 2 using S instead of {1...n} and
by ignoring the dependency of f on {¢;}. With this and using the
more concise notation for these terms, we have:

E[Yg] = Z Cs, T Ysur
Te P(S)

where the coefficient in front of yg 4 is:

Cs,Tz"H"“(E:"l")“l“f“"'H| |H|R Pl
ie P(SY) ’

ieT ie TC
where the complement of 7 is taken with respect to P(SC). Now, if

we let f/s’ 7 be an unbiased estimate for yg for T € P(SC) -9,
and we let:

- 1
YS = C—[YS—
S, 0

we have, using linearity of expectation and the above equations,

>

Cs, T?S, T]

TeP(S) -

E [); s] = yg. Thus, Y s is indeed an unbiased estimate for yg . The
equation that defines Y s can be solved recursively by making two

observations. First, Y {1..n is an unbiased estimate for y (1.0}

(which follows directly from Theorem 1 with f replaced by _/‘2),
thus f/ {1..n

depends only on Y ¢ and unbiased estimates of terms y, where S

y =Yy - Second, the equation that defines Y s

is a strict superset of S, and thus the recursion always terminates
with the unbiased estimator for y {1..n} in at most n steps.

7.3 Analysis of N; fori>1

As described in Section 5.2, the estimates associated with the lev-
elwise steps after the first one are different, in that each record has
a 1/p probability of appearing in each partition, and the sampling
of each record is independent. This changes the analysis.

In subsequent levelwise steps, the samples are produced by flip-
ping an independent p-faced coin for every tuple in the relation and
placing it in one of the p samples depending on the outcome. Using
the same approach as in the previous section, the random variables
X; have different behavior. In this case:

L/pift; =1t/
E[X,]1=1/p; E[X,X,/] ={)
' Y 1/p~ift,#t/
=5 Ar-8)+ =1p 18
- tnri,l—)-'—(- [[’t[l)_z - —5[+(p_) tl’tl,]
p p
Since E[th_] = 1/p (just as in the first levelwise step), X is unbi-

ased just as in the first levelwise step. However, the second
moment of X is changed, along with the variance of X:

Theorem 3: Second moment of X:

Y -0 % [

Se P(n) {t;e Rj|ie 5}

E[X?] =

>

. C
{t;€ Rj‘]eS 1

2
f([p tj)]

Proof: The proof is similar to the proof of Theorem 2, but here
=landb;, = p-1.0

Otherwise, not much changes in subsequent levelwise steps. The
observations of Section 7.2.3 with respect to the covariance
between various trials over the variable X hold, and the process of
estimating the variance of each X changes only slightly. To deter-
mine unbiased estimates for yg, the coefficients cgy have to be

T . . .
taken as cg r = (p— 1)‘ ‘. Otherwise, the equations that give

unbiased estimates for the variance can be solved as before.

734

O

z“availqty

/\
/\\

‘zextendedprice

/\
\\

> T T O1inenumber
/ \ \ \ Gmktsgmt ‘
SJ.ze PS Gsuppkey 0 ‘ L
| | ¢
P L 5)
0y 2 cctbal Oy ‘ availaty Os:
|

‘ztotalprice

N\ 2 Nk
/ \ / \ / \ / \ / \
‘ Ogty Tavallqty

PS

Figure 6: Test query plans.

8 BENCHMARKING

This Section describes a set of benchmarking experiments. Space
precludes a detailed benchmark of the DBO engine’s performance
characteristics; thus, we focus on the goal of answering the follow-
ing questions:

*How does the width of the confidence bounds produced by the
DBO engine decrease in time? Is the decrease rapid and smooth,
so that the DBO engine could be used to produce useful results in
a short period of time, and more useful results given more time?

*Are the DBO confidence intervals reliable?

*How does the total execution time of the DBO engine compare
with the execution time of a traditional database system? Is the
overhead incurred by the statistical processing required by the
DBO system acceptable?

Experimental Setup. In our experiments, we evaluate five queries
over the TPC-H schema. In order to introduce some mild skew into
the data to make the evaluation more interesting, we implemented
our own TPC-H data generator and generated a database having a
scale factor of 10, which creates a database that is approximately
10 GB in size. The queries we run are over the following five
tables: (1) lineitem (L) - 7GB and 60 million rows; (2)
orders (0) - 1.4 GB and 15 million rows; (3) part (P) - 215
MB and 2 million rows; (4) partsupp (PS) - 1.4 GB and 8 mil-
lion rows; and (5) customer (C) - 240 MB and 1.5 million rows.
For more information, see http://www. tpc.org/.

To test the width of the confidence bounds produced by the DBO
engine and to test total running time, we consider the five queries
whose query plans are depicted in Figure 6. The relational selec-
tion predicates on P and L in Oy have selectivities of 20% and 60%
respectively. Those on L and PS in Q, have selectivities of 99%
and 20% respectively. Those on C and L in Q3 have selectivities of
99% and 20% respectively. Note that both O and Q3 make use of
the scan/re-randomize operator.

These query plans were run to completion using the DBO
engine. The experimental platform was a 2.4GHz Pentium Xeon
machine with 2GB of RAM and dual 10K RPM, 80GB SCSI hard
disks. In Figure 7, we plot the relative confidence interval width

Query 1 Query 2
- 1 1
3 <
S
= 0.1 \ 5 0.1 .
3 B & 8
c \/ 7]
£ oot 0.01 K
) — S\) — ~
£ 0001} B | & & 0.001 | & o
5 2 2 2 2 2
K ©n ©n 7] %) n
0.0001 0.0001
0 300 600 900 1200 1500 0 300 600 900 1200
Seconds Elapsed Seconds Elapsed
Query 3 Query 4
s o o
= 5] o
= 0.1 — |2 0.1 2
: N ?
£ oot _ “ 0.01
[[=9 (=9 — (o}
2 Q o
£ 0.001 = 0.001 =3 =9
g n 7] 3
i 172} wn
0.0001 0.0001
0 300 600 900 1200 1500 0 600 1200 1800 2400 3000
Seconds Elapsed Seconds Elapsed
Query 5
1
<
]
B 0.1
©
4
g 0.01 — N
- o o
g 3 2
5 0.001 n n
©
[id
0.0001

300 600
Seconds Elapsed

900

Figure 7: Relative confidence interval width as a function of
time for the five test query plans.

produced by DBO as a function of time for these queries (the rela-
tive confidence interval width is the ratio between confidence inter-
val width and the current estimate). These CLT-based bounds were
produced using a 95% confidence level, meaning that for a calcu-

lated variance of & , bounds of approximately 26 around the
estimate were used. Thus, a relative interval width of 0.12 means
that the width of the 95% confidence bounds is 12% as large as the
current estimate.

To test the accuracy of the given confidence intervals, we re-gen-
erate the database 100 times and for each instance of the database,
we re-run Q3 and Q4 to completion. For each query, we consider

all of the confidence intervals reported at the end of minute m of
the query execution as a group, and for each value of m we com-
pute the fraction of confidence intervals that did, in fact, contain
the actual query answer. The results of this experiment are given as
Figure 8.

Finally, the time required for completing each query is given as
Figure 9. This time is compared with the time required to run the
same query to completion on the same machine, using the Postgres
system. While we realize that other, widely-used commercial sys-
tems such as Oracle are likely to be faster than Postgres, legal
restrictions prohibit publishing such a comparison. Still, Postgres
is widely used. Thus, this experiment should be seen as testing
whether query execution time in DBO is at least “in the ballpark”
of what one might expect in terms of completion time from a com-
mercial system.

Discussion. It is possible to draw a few conclusions from these
results. First, there does not appear to be much of a hit in terms of
additional execution time with the DBO engine as compared to a
traditional database system. Our experiments show that DBO is
actually significantly faster than Postgres in evaluating each of
these particular queries. This does not imply that DBO would be
faster than any commercial system, especially since Postgres is

735

Query 3 Cl Accuracy Query 4 Cl Accuracy

® 9 * 9
> > 98
9 9

© 98 ®

% g 97
2 97 g %
5 S 95
3 96 3 94
£ 95 2 93
o @

2 2 92
O 94 O 91

5 10 15 20 5 10 15 20 25 30 35 40

Minutes Elapsed Minutes Elapsed

Figure 8: Observed 95% interval accuracy over 100 indepen-
dent query executions.

surprisingly CPU-bound for this particular workload. However,
these results do strongly indicate that algorithms underlying DBO
do not incur much of an overhead, validating our claim that the sta-
tistical analysis provided by DBO does not come at too high a cost.
Second, these results show that the engine is able to consistently
narrow confidence intervals throughout execution. At the begin-
ning of each level, the intervals tend to narrow very quickly (since
the estimators associated with each subsequent level are far more
accurate than the estimators associated with previous one), but the
intervals narrow consistently within each level as well.
Furthermore, these results show that scalability is an absolute
necessity in this type of online approximation. In our experiments,
DBO fully consumed main memory in 15 to 20 seconds from the
start of query processing. Up until this time, the DBO estimate
would be identical to the estimate provided by a hashed ripple join,
which must be terminated when the main memory is consumed.
From Figure 7, it is clear that after such a short time period, the
estimates obtained can be far from accurate. For example, in O,

the estimate starts out with a 95% confidence interval width that is
almost wider than the magnitude of the estimate itself. But by the
end of the first levelwise step, DBO is able to shrink that width to
less than 10% of the estimate; by the end of the second levelwise
step, the width is less than 1% of the estimate. Given the extreme
narrowness of the confidence intervals observed after one or two
levels in every case, it is reasonable to claim that for many applica-
tion-specific accuracy requirements, DBO query processing can be
terminated early with a satisfactory answer.

Finally, Figure 8 gives strong evidence that the variance calcula-
tions described in the paper and the CLT-based bounds we use are
in fact valid. Using the binomial distribution, it can easily be calcu-
lated that if the true confidence interval probability were 95%, over
100 trials we would expect a 96% chance of observing between 91
and 99 “correct” confidence intervals. From Figure 8 we observe
that for the 100 query repetitions tested over O3 and Q4, only three
of the 62 minutes have less than 91 correct intervals or more than
99. Significantly, (62 - 3)/62 = 95.2%, which is very close to the
96% that one would expect given 62 sets of 100 tests over true,
95% confidence intervals. Granted, this is not irrefutable evidence
of correctness. Only two queries were tested (since each test
requires several days) and the 62 minutes reported are not indepen-
dent (a correct interval in one minute makes it more likely to
observe a correct interval in the next). But this certainly is a strong
argument that our derivations are in fact valid.

9 RELATED WORK

As discussed previously in the paper, the work most closely related
to the DBO engine is the previous work on online aggregation
[6][7]1[10][11] and the SMS join [13]. Online aggregation has its
roots in early work linking approximation with processing time
[12]. This paper takes inspiration from, and extends, both. For

Query Execution Time

Query | DBO | Postgres
O 26m42s |43m47s
0, 20m08s |34m27s
05 29m12s |37m40s
(on 47m05s (88m28s
05 17m28s |46m31s

Figure 9: Completion time of DBO vs. Postgres.

example, the statistical results given in Section 7 extend the results
of Haas et al. [6][7][8] by extending their analysis to the different
types of finite-population sampling without replacement required
by the DBO engine, and extend the results of Jermaine et al. [13]
by considering Bernoulli (coin-flip) sampling and arbitrary num-
bers of relations. The algorithms used by DBO clearly have their
roots both in the ripple join and in the SMS join, but dramatically
extend the applicability of both to the point where the DBO engine
may actually be competitive with traditional query-processing
methodologies, thereby giving online estimates and accuracy guar-
antees “for free”.

There is a body of relevant work in the database literature on
sampling-based algorithms for approximate query processing.
Olken’s work, summarized in his PhD thesis [16], is well-known.
The two papers most closely related to this one describe join syn-
opses [1], and Chaudhuri et al.’s work discusses important issues
associated with sampling from joins [2]. However, neither of these
papers has the systems-oriented focus of our work, where the goal
is to build a system that can run a query from start-up through
completion. Join synopses provide a single, fixed precision esti-
mate and are limited to foreign key joins, and it is not clear how to
scale Chaudhuri et al.’s work so that all of the tuples resulting from
a multi-gigabyte join can be sampled in a scalable fashion.

10 FUTURE WORK AND CONCLUSION

This paper has described how the DBO query execution engine can
process SELECT-FROM-WHERE-GROUP BY aggregate SQL que-
ries over multiple input relations in a scalable fashion, and give
statistically rigorous accuracy guarantees from start-up through
completion of the plan. This has required significant algorithmic
innovation, as well as an extensive statistical analysis of the prop-
erties of our new algorithms. The focus of the paper was specifi-
cally directed towards query processing (both algorithmic and
statistical issues). To keep the paper’s scope at a manageable level,
other important questions must be deferred to future work. These
questions include the following:

*How should query optimization be performed in the DBO system?
This will be a challenging task, because DBO has two competing
optimization goals: running the query to completion quickly, and
giving accurate estimates that converge quickly. We plan to use
user input to specify the relative importance of the two goals.

*Are there other join algorithms suitable for use within DBO? Our
preliminary work has focused only on a variant of the sort-merge
join. It may be desirable to give DBO the ability to use other
joins (such as the hybrid hash join) during the computation of a
levelwise step.

*How must indexing change in the DBO system? Current sampling-
based indexing methodologies [17][18] are likely not useful

736

within the DBO system, because they are targeted towards small
samples and require random disk I/Os to sample from a relational
selection predicate. Developing indexing and file organizations
that support fast sampling from selection predicates is important.

*How can the randomized data ordering be maintained during
data update? DBO requires a random clustering of data on disk.
Developing new, easily-maintained randomized file organiza-
tions that support fast updates will be a priority.

*Can DBO be extended past joins containing equality conditions?
Other operations such as relational subtraction, non-equi-join
queries, and duplicate removal are important. There has been
some initial work in this area [14], but more effort is needed to
allow for truly scalable processing.

References

[1] S. Acharya, P. Gibons, V. Poosala, S. Ramaswamy: Join Syn-

opses for Approximate Query Processing. SIGMOD 1999:

275-286.

S. Chaudhuri, R. Motwani, V.R. Narasayya: On Random

Sampling over Joins. SIGMOD 1999: 263-274

W. Cochran: Sampling Techniques. Wiley and Sons, 1977

J.-P. Dittrich, B. Seeger, D.S. Taylor, Peter Widmayer: On

producing join results early. PODS 2003: 134-142

J.-P. Dittrich, B. Seeger, D.S. Taylor, P. Widmayer: Progres-

sive Merge Join: A Generic and Non-blocking Sort-based

Join Algorithm. VLDB 2002: 299-310

P.J. Haas, J.M. Hellerstein: Ripple Joins for Online Aggrega-

tion. SIGMOD 1999: 287-298

P.J. Haas: Large-Sample and Deterministic Confidence Inter-

vals for Online Aggregation. SSDBM 1997: 51-63

PJ. Haas, J. F. Naughton, S. Seshadri, A. N. Swami: Selectiv-

ity and Cost Estimation for Joins Based on Random Sam-

pling. J. Com. Syst. Sci. 52(3): 550-569 (1996)

G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities.

Cambridge University Press, 1988.

[10] J.M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V.
Raman, T. Roth, PJ. Haas: Interactive Data Analysis: The
Control Project. IEEE Computer 32(8): 51-59 (1999)

[11] J.M. Hellerstein, P.J. Haas, H.J. Wang: Online Aggregation.
SIGMOD 1997: 171-182

[12] G. Ozsoyoglu, K. Du, S.G. Swamy, W.-C. Hou: Processing
Real-Time, Non-Aggregate Queries with Time-Constraints in
CASE-DB. ICDE 1992: 410-417

[13] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, A. Pol: A
Disk-Based Join with Probabilistic Guarantees. SIGMOD
2005: 456-467.

[14] C. Jermaine, A. Dobra, A. Pol, S. Joshi: Online Estimation for
Subset-Based SQL Queries. VLDB 2005: 745-756.

[15] G. Luo, C. Ellmann, PJ. Haas, J.F. Naughton: A scalable hash
ripple join algorithm. SIGMOD 2002: 252-262

[16] F. Olken: Random Sampling from Databases. PhD Thesis, U.
of California, Berkeley, 1993

[17] F. Olken, D. Rotem, P. Xu: Random Sampling from Hash
Files. SIGMOD 1990: 375-386

[18] F. Olken, D. Rotem: Random Sampling from B+-Trees.
VLDB 1989: 269-277

[19] L.D. Shapiro: Join Processing in Database Systems with
Large Main Memories. ACM TODS 11(3): 239-264 (1986)

[20] J. Shao: Mathematical Statistics. Springer-Verlag, 1999.

(2]

(3]
[4]

(5]

(6]
(7]
8]

(9]

	1 INTRODUCTION
	2 Why Is This Hard?
	2.1 The Ripple Join
	2.2 The SMS Join
	2.3 Fixing the Problem?

	3 DBO Query Evaluation: Overview
	Figure 1 : Levelwise query evaluation in DBO.

	4 The Levelwise Step
	4.1 The Scan Phase
	Figure 2 : Scan phase of a levelwise step. In this example, we assume an SQL query having the whe...

	4.2 The Merge Phase

	5 Scan Phase Estimation In Depth
	Figure 3 : The merge phase of a levelwise step used to compute R12R1R2 and R34R3R4 for a query wi...
	5.1 Estimating the First Time Around
	5.2 Estimation at Subsequent Levels
	5.3 Estimation At the Last Level
	5.4 Estimating the Final Answer to the Query
	5.5 Providing Confidence Bounds

	6 Additional Considerations
	6.1 Why Use the Round-Robin Approach?
	6.2 Choosing the Number of Runs
	Figure 4 : Using the round-robin method, seven combinations of runs are considered when relations...

	6.3 Handling Data Skew
	6.4 Handling GROUP BYs and Other Aggregates
	6.5 Handling Inconvenient Queries
	Figure 5 : Handling a star-join query. The example query (a) would typically be evaluated using a...

	7 Statistical Considerations
	7.1 Notation
	7.2 Analysis of N1: the First Levelwise Step

	7.2.1 Analysis of Expectation
	7.2.2 Analysis of Variance
	7.2.3 Extending the Analysis to N1
	7.2.4 Estimating the Variance
	7.3 Analysis of Ni for i > 1

	8 Benchmarking
	Figure 6 : Test query plans.
	Figure 7 : Relative confidence interval width as a function of time for the five test query plans.
	Figure 8 : Observed 95% interval accuracy over 100 independent query executions.

	9 Related Work
	Figure 9 : Completion time of DBO vs. Postgres.

	10 Future Work and CONCLUSION
	[1] S. Acharya, P. Gibons, V. Poosala, S. Ramaswamy: Join Synopses for Approximate Query Processi...
	[2] S. Chaudhuri, R. Motwani, V.R. Narasayya: On Random Sampling over Joins. SIGMOD 1999: 263-274
	[3] W. Cochran: Sampling Techniques. Wiley and Sons, 1977
	[4] J.-P. Dittrich, B. Seeger, D.S. Taylor, Peter Widmayer: On producing join results early. PODS...
	[5] J.-P. Dittrich, B. Seeger, D.S. Taylor, P. Widmayer: Progressive Merge Join: A Generic and No...
	[6] P.J. Haas, J.M. Hellerstein: Ripple Joins for Online Aggregation. SIGMOD 1999: 287-298
	[7] P.J. Haas: Large-Sample and Deterministic Confidence Intervals for Online Aggregation. SSDBM ...
	[8] P.J. Haas, J. F. Naughton, S. Seshadri, A. N. Swami: Selectivity and Cost Estimation for Join...
	[9] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University Press, 1988.
	[10] J.M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, P.J. Haas: Int...
	[11] J.M. Hellerstein, P.J. Haas, H.J. Wang: Online Aggregation. SIGMOD 1997: 171-182
	[12] G. Özsoyoglu, K. Du, S.G. Swamy, W.-C. Hou: Processing Real-Time, Non-Aggregate Queries with...
	[13] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, A. Pol: A Disk-Based Join with Probabilistic G...
	[14] C. Jermaine, A. Dobra, A. Pol, S. Joshi: Online Estimation for Subset-Based SQL Queries. VLD...
	[15] G. Luo, C. Ellmann, P.J. Haas, J.F. Naughton: A scalable hash ripple join algorithm. SIGMOD ...
	[16] F. Olken: Random Sampling from Databases. PhD Thesis, U. of California, Berkeley, 1993
	[17] F. Olken, D. Rotem, P. Xu: Random Sampling from Hash Files. SIGMOD 1990: 375-386
	[18] F. Olken, D. Rotem: Random Sampling from B+-Trees. VLDB 1989: 269-277
	[19] L.D. Shapiro: Join Processing in Database Systems with Large Main Memories. ACM TODS 11(3): ...
	[20] J. Shao: Mathematical Statistics. Springer-Verlag, 1999.

