C-STORE: A COLUMN-
ORIENTED DBMS

Author: Mike Stonebraker , Daniel J. Abadi , Adam Batkin , Xuedong Chen , Mitch Cherniack , Miguel
Ferreira , Edmond Lau , Amerson Lin , Sam Madden , Elizabeth O’'Neil , Pat O’'Neil , Alex

Rasin , Nga Tran , Stan Zdonik

Presenter: Songtao Wei

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

What is a column-oriented DBMS ?

Row-oriented systems
001:Bob,25,Math,10K;
002:Bill,27,EECS,50K;
003:Jill,24,Biology,80K;

Column-oriented systems
Bob:001,Bill:002,Jill:003;
25:001,27:002,24:003;
Math:001,EECS:002,Biology:003;
10K:001,50K:002,80K:003;

Name Age Dept Salary
Bob 25 Math 10K
Bill 27 EECS SO0K
Jill 24 Biology 80K

University at Buffalo

Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Why using column-oriented DBMS ?

* Minimize the number of hard disk seeks

« Compress data
Bob:001,Bill:002,Jill:003;
25:001,27:002,24:003;
Math:001,EECS:002,Math:003;
10K:001,50K:002,80K:003;

-> Math:001,003,EECS:002;

* Read only the data necessary to answer the query.

Name Age Dept Salary
Bob 25 Math 10K
Bill 27 EECS SO0K
Jill 24 Bielegy— Math 80K
Name Salary
Bob 10K
Bill 50K
Jill 80K

University at Buffalo
B | Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Commercial products

SAP 1Q — owned by SAP w

Sensage SSENSAGE

Kdb+ - Owned by Kx Systems I(x

Vertica(Vertica Analytic Database)* VERTICA

* Andrew Lamb, et al. The Vertica Analytic Database: CStore 7 Years Later. In VLDB '12.

https://cse.buffalo.edu/~zzhao35/teaching/cse707_fall21/vertica.pdf

University at Buffalo
B | Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

C-Store

o (C-Store stores a collection of columns

» Projections: Groups of columns sorted on the same attribute.

Writeable Store (WS)

« Three components architecture:
« WS component optimized for frequent insert and update \TuvleMover

* RS component optimized for read-only query performance. Read-optimized Store (RS)

» Tuple Mover move blocks of tuples in a WS to the corresponding RS,
and updating any join indexes in the process.

Figure 1. Architecture of C-Store

» Allows redundant storage of elements of a table in several overlapping projections in
different orders

« Heavily compressed columns using one of several coding schemes.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Data model -
Name Age Dept Salary
. Bob 25 Math 10K
- Standard SQL semantics Bill | 27 EECS S0K
Jill 24 Biology 80K
- No physical tables stored using logical data model, only DEPT
iImplement projections.
- Able to contain other table’s attributes, as long as its’ N:1 Math 1
relationship (foreign key) SECS 2
Biology <

- the term projection is slightly different than common practice,
since there is no base table stored.

EMP1 (name, age)
EMP2 (dept, age, DEPT.floor)

EMP(name, age, salary, dept) EMP3 (name, salary)
DEPT1 (dname, floor)

DEPT(dname, floor) Example 1: Possible projections for EMP and DEPT

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Data model

- the sort order of a projection by appending the sort key to the
projection separated by a vertical bar.

Name Age Dept Salary
Bob 25 Math 10K
Bill 27 EECS 50K
Jill 24 Biology 80K
EMP]l (name, age)
EMPZ (dept, age, DEPT.floor)
EMP3 (name, salary)
DEPT]1 (dname, floor)

EMP1 (name, age| age)

EMP2 (dept, age,
EMP3 (name,
DEPTI1 (dname,

Jill

EMP1

24

|Bob

25

[Bin

27

DEPT.floor|
salary|
floor|

salary)

floor)

DEPT.floor)

EMP3

Bob

10K

Bill

50K

Jill

80K

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Data model

- Covering set of projections: every column in the table is stored
in at least on projection.

- Reconstructions of table using Join index and Storage key.

- Values from different columns in the same segment with
matching storage keys belong to the same logical row.

- Every projection is horizontally partitioned into 1 or more
segments, which are given a segment identifier, Sid, where
Sid>0

Name Age Dept Salary
Bob 25 Math 10K
Bill 27 EECS S0K
Jill 24 Biology 80K

EMP1 (name, age| age)

EMP2 (dept, age,

DEPT. floor|

EMP3 (name, salary| salary)
DEPT1 (dname, floor| floor)

Jil

_EMP1

|Bob

24
25
27

[Bin

‘/////ComnmnSONOMer

Join Index

EMP3

Key

10K

S0K

Jill

80K

DEPT.floor)

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Read-optimized Store (RS)

Storage keys are not stored in RS, but calculated from tuple’s physical position

in the column.
4 Encoding Schemes.

Encoding chosen for a column depends on its ordering
- self-order: the column ordered by values in that column

¥

EMP] (name, age| age)

EMP1

Name
Jill

24

- foreign-order: the column ordered by corresponding values of [Bov

some other column in the same projection

25

[Bin

27

foreign-order

N

self-order

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Read-optimized Store (RS)

- 4 encoding schemes

Self-order, few distinct values: (v,f,n)
0,0,0,1,2,2,2,3,3,3 => (0,1,3),(1,4,1),(2,5,3),(3,8,3)
Foreign-order, few distinct values: bitmap (v,b)
0,0,1,1,2,1,0,2,1 => (0, 110000100), (1, 001101001), (2,000010010)
Self-order, many distinct values: represent as delta from previous value
1,4,7,7,8,12 => 1,3,3,0,1,4
Foreign-order, many distinct values: unencoded

- All use B-tree for indexing in order to minimize disk reads.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Writeable Store (WS)

- Less data compare to RS
- No need to compress for better insert and delete performance
- ldentical DBMS design as RS

- Unique storage key is stored in WS segments and given to each insert of a logical
tuple in a table.

- Every column in a WS projection is represented as a collection of pairs, (v, sk), such
that v is a value in the column and sk is its corresponding storage key

- Structure is represented in a conventional B-tree on sk

- The sort key(s) of each projection is additionally represented by pairs (s, sk) such that
s is a sort key value and sk is the storage key describing where s first appears.

- Structure represented as a conventional B-tree on s

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Join Index and Tuple Mover

- Every projection is represented as a collection of pairs of segments, one in WS and
one in RS.

- For each record in WS, need to store the sid and storage key of a corresponding
record in RS.

- This data movement process is done by Tuple Mover.

Join Index

Writeable Store (WS)

\Tuple Mover

Read-optimized Store (RS)

Figure 1. Architecture of C-Store

1

2

1

3

1

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Storage Management

- Allocate segments to different nodes in a grid system using a
storage allocator.

- Stillin plan (implemented in Vertica, section 3.6)

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Read-only Transactions

- Provides Snapshot isolation

- No need locking by using HWM

- timestamp authority (TA) boardcasting timestamps to other sites.
- The time unit is epoch.

- TAhas received epoch complete messages from all sites for epoch e, it sets the the high watermark(HWM) to be e

Site Site Site TA time
- = T
Tl I
T2 I T3
................................. I SR N F S N SN (=1l tal=
T4 - - Fl:-.r' — = — - — — End of epoch epoch
I ... - o— » Epoch complete e+
............................... TS I = Epoch complete Q
= Epoch complete \\
- e - New HWM(e) Vv b
\\\
14 « A
V2 Y
’ |

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Read-write transactions

- Read-write transactions use strict two-phase locking for concurrency control among each site
- Update is turned into a insert and a delete

- Using an insertion vector (IV) for each projection segment in WS that record the time (epoch) the
record is inserted

- Using a deleted record vector (DRV) for each projection, which has one entry per projection
record, containing a O if the tuple has not been deleted

- Resolve deadlock via timeouts

- Tuple Mover will choose WS segment insert time <= LWM, then separate into two groups
- Deleted <=LWM, discarded
- Not deleted or delete after LWM, sent to RS

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Query Operators and Optimization

- Operators
- Similar to SQL operator, include Decompress, Select,
Mask, Project, Sort, Aggregation Operators, Concat,
Permute, Join, Bitstring Operators

- Optimization
- Use a Selinger-style optimizer that uses cost-based
estimation for plan construction
- The major optimizer decision is which set of projections
to use for a given query.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Performance

- Only test for RS

- No Segments, update, WS, and tuple mover.

- Limited to read-only queries.

- benchmarking system:

3.0 Ghz Pentium
RedHat Linux

2 Gbytes of memory
750 Gbytes of disk

University at Buffalo

Department of Computer Science CREATE TABLE LINEITEM (

and Engineering L_ORDERKEY INTEGER NOT NULL,

School of Engineering and Applied Sciences L_PARTKEY INTEGER NOT NULL,
L SUPPKEY INTEGER NOT NULL, —0
L LINENUMBER INTEGER NOT NULL,

L QUANTITY INTEGER NOT NULL,

L EXTENDEDPRICE INTEGER NOT NULL
Storage Performance L:RETURNFLAG CHAR (1) NOT NULL:

L SHIPDATE INTEGER NOT NULL);

CREATE TABLE ORDERS (

- simplified version of TCP-H, one site O_ORDERKEY INTEGER NOT NULL,
O CUSTKEY INTEGER NOT NULL,
- TPC-H scale_10 totals 60,000,000 line items (1.8GB) 9 ORDRRDATE INIEGER:'NOT ‘NULL):#

CREATE TABLE CUSTOMER (
. C_CUSTKEY INTEGER NOT NULL,
C-Store Row Store Column Store C_NATIONKEY INTEGER NOT NULL);

1.987 GB 4.480 GB 2.650 GB

C-store schema
D1l: (1 _orderkey, 1 partkey, 1 suppkey,

- C-Store uses 40% of the space of the row store and 70% of t_tigenumber; L. duastity :
1 extendedprice, 1 returnflag, 1 shipdate
Column Store | 1_shipdate, 1_suppkey)

- Because of the compression and no padding of p2: (o_orderdate, 1_shipdate, 1_suppkey |
o_orderdate, 1 suppkey)

word. D3: (o_orderdate, o_custkey, o_orderkey |
o_orderdate)
D4: (1 returnflag, 1 extendedprice,
c_nationkey | 1 _returnflag)
D5: (c_custkey, c_nationkey | c_custkey)

18

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Query performance

- D2 and D4 are materialized (join) views

- D3 and D5 are added for completeness since we don'’t use
them in any of the seven queries.

D1:

D2:

D3:

D4:

D5:

(1 _orderkey, 1 partkey, 1 suppkey,

1 linenumber, 1 quantity,

1 extendedprice, 1 returnflag, 1 shipdate
| 1 shipdate, 1 suppkey)

(o_orderdate, 1 shipdate, 1 suppkey |
o orderdate, 1 suppkey)

(o_orderdate, o_custkey, o_orderkey |
o0 orderdate)

(f:returnflag, l_extendedprice,
c_nationkey | 1 returnflag)
(c_custkey, c_nationkey | c_custkey)

QL.

Determine the total number of lineitems shipped for

each day after day D.
SELECT 1 _shipdate, COUNT (*)
FROM lineitem
WHERE 1 shipdate > D
GROUP BY 1 shipdate

Q2. Determine the total number of lineitems shipped for

Q3.

Q4.

Qs.

Q6.

Q7.

each supplier on day D.

SELECT 1 suppkey, COUNT (*)

FROM lineitem

WHERE l_Shipdate =D

GROUP BY 1 suppkey

Determine the total number of lineitems shipped for
each supplier after day D.

SELECT 1 suppkey, COUNT (*)

FROM lineitem

WHERE l_shipdate > D

GROUP BY 1 suppkey

For every day after D, determine the latest shipdate

of all items ordered on that day.
SELECT o_orderdate, MAX (1 _shipdate)
FROM lineitem, orders
WHERE 1 orderkey = o_orderkey AND
©o_orderdate > D
GROUP BY o_orderdate
For each supplier, determine the latest shipdate of an
item from an order that was made on some date, D.
SELECT 1 _suppkey, MAX (1 _shipdate)
FROM lineitem, orders
WHERE 1 orderkey = o_orderkey AND
o _orderdate = D
GROUP BY 1 suppkey
For each supplier, determine the latest shipdate of an
item from an order made after some date, D.
SELECT 1 suppkey, MAX (1 shipdate)
FROM lineitem, orders
WHERE 1 orderkey = o _orderkey AND
o _orderdate > D
GROUP BY 1 suppkey
Return a list of identifiers for all nations represented
by customers along with their total lost revenue for
the parts they have returned. This is a simplified
version of query 10 (Q10) of TPC-H.
SELECT c_nationkey, sum(l_extendedprice)
FROM lineitem, orders, customers
WHERE 1 orderkey=o_orderkey AND
o_custkey=c_custkey AND
1 _returnflag='R'
GROUP BY c_nationkey

University at Buffalo

Department of Computer Science

and Enginee ring Q1. Determine the total number of lineitems shipped for
School of Engineering and Applied Sciences each day after day D.
SELECT 1_shipdate, COUNT (*)
FROM lineitem —()

WHERE 1 shipdate > D
GROUP BY 1 shipdate

Q2. Determine the total number of lineitems shipped for

Query performance aAppler il
FROM lineitem
WHERE 1 shipdate = D

GROUP BY 1 suppkey
Q3. Determine the total number of lineitems shipped for

. each supplier after day D.
— SELECT 1 suppkey, COUNT (*)
Column representation SELECT 1_supp
WHERE l_shipdate > D
GROUP BY 1 suppkey

- Storing overlapping projections, not the whole table Q4. For every day afier D, determine the latest shipdate

of all items ordered on that day.
. SELECT o_orderdate, MAX (1 _shipdate)
- Better compression of data FROM 1inSitem, orders
WHERE 1 orderkey = o_orderkey AND
o _orderdate > D

- Query operators operate on compressed representation GROUP BY o_orderdate

Q5. For each supplier, determine the latest shipdate of an
item from an order that was made on some date, D.
SELECT 1 suppkey, MAX (1 shipdate)
FROM lineitem, orders
WHERE 1 orderkey = o_orderkey AND
o _orderdate = D

- GROUP BY 1 suppkey
Q uery C-Store Row Store Column Q6. For each supplier, determine the latest shipdate of an
Store item from an order made after some date, D.

SELECT 1 suppkey, MAX (1 _shipdate)

Ql 0.03 680 2_24 FROM lineitem, orders

WHERE 1 orderkey = o_orderkey AND

QZ 0-36 109 0_33 o _orderdate > D

GROUP BY 1 suppkey

Q3 4.9(0 03.26 29 .54 Q7. Return a list of identifiers for all nations represented

by customers along with their total lost revenue for

Q4 2.09 722.90 22.23 the parts they have returned. This is a simplified
QS 0.31 116.56 0.93 version of query 10 (Q10) of TPC-H. .

SELECT c_nationkey, sum(l_extendedprice)
Q6 8.50 652.90 32.83 AK Linsitem, ocdacs, customecs %
Q7 2.54 265.80 33.24 retuentiagonr

GROUP BY c_nationkey

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Query performance

D1:

Add materialized views that correspond to the projections used D2:

(1 orderkey, 1 partkey, 1 suppkey,

1 linenumber, 1 quantity,
l_extendedprice, 1 returnflag, l_shipdate
| 1 shipdate, 1 suppkey)

(0_orderdate, 1 shipdate, 1 suppkey |

Wlth C-Store' D3: (%:?)L;(zieei’c:iaatx’_ee', t:sctpsi);ee};), o_orderkey |
Performance catch up but with a cost of consuming too much S T Pt et 1 GAEAEELES,
Storage_ c_nationkey | l_r.eturnflag)
D5: (c_custkey, c _nationkey | c_custkey)
C-Store Row Store Column Store C-Store Row Store Column Store
Query C-Store Row Store Column Query C-Store Row Store Column
Store Store
Ql 0.03 6.80 2.24 Ql 0.03 0.22 2.34
Q2 0.36 1.09 0.83 ‘ Q2 0.36 0.81 0.83
Q3 4.90 93.26 29.54 Q3 4.90 49.38 29.10
Q4 2.09 722.90 22.23 Q4 2.09 21.76 22.23
Q5 0.31 116.56 0.93 Q5 0.31 0.70 0.63
Q6 8.50 652.90 32.83 Q6 8.50 47.38 25.46 .
Q7 2.54 265.80 33.24 Q7 2.54 18.47 6.28

Add materialized views

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Query performance

Space-constrained case:
- 164 times faster than the commercial row-store
- 21 times faster than the commercial columnstore

Without space limitation:

- 6.4 times faster than the commercial row-store,
- row-store takes 6 times the space.

- 16.5 times faster than the commercial column-store,
- column-store requires 1.83 times the space.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Advantages

- Efficient on space usage

- Fast speed compare

- Vertica further reduced the size of data.

- Vertica using software engineering methods such as
vectorized execution and more complex compression
algorithms in order to achieve twice speed as C-store on
a single core machine

Query C-Store Row Store Column

Store

Ql 0.03 0.22 2.34
Q2 0.36 0.81 0.83
Q3 4.90 49.38 29.10
Q4 2.09 21.76 22.23
Q5 0.31 0.70 0.63
Q6 8.50 47.38 25.46
Q7 2.54 18.47 6.28
Metric C-Store | Vertica

Q1 30 ms 14 ms

Q2 360 ms 71 ms
Q3 4900 ms | 4833 ms

Q4 2090 ms | 280 ms

Q5 310 ms 93 ms
Q6 8500 ms | 4143 ms

Q7 2540 ms 161 ms

Total Query Time 18.7 s 9.6s

| Disk Space Required | 1,987 MB | 949 MB |

Source: Andrew Lamb, et al. The Vertica Analytic Database: CStore 7 Years Later. In VLDB '12.

https://cse.buffalo.edu/~zzhao35/teaching/cse707_fall21/vertica.pdf

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Disadvantages

- Single threaded (massively parallel processing hardware supported in Vertica)
- Need to design schema for the query in order to get best speed result.

- Join index is hard to design and maintenance is very expensive. (Replace by one or more
“super projection” containing every column of the anchoring table in Vertica)

- Only support integer data type. (more datatype support added in Vertica such as FLOAT and
VARCHAR)

- Not able to process SQL NULLSs. (support in Vertica)

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Conclusion

- C-store is a prototype, but still have good performance on
typical situation.

- The Vertica take the main idea of C-store and implement it
further more on data type support, speed and compression
size.

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Reference

Michael Stonebraker, et al. C-store: a column-oriented DBMS. In VLDB '05.

Andrew Lamb, et al. The Vertica Analytic Database: CStore 7 Years Later. In VLDB '12.

https://cse.buffalo.edu/~zzhao35/teaching/cse707_fall21/cstore.pdf
https://cse.buffalo.edu/~zzhao35/teaching/cse707_fall21/vertica.pdf

