RETHINKING SIMD
VECTORIZATION FOR IN-
MEMORY DATABASES

Orestis Polychroniou

Arun Raghavan

Kenneth A. Ross

% University at Buffalo The state University of New York

-(é University at Buffalo The State University of New York

Modern Hardware

Today’s servers have large amounts of main memory
For example, AMD Epyc 7763

e 256MB of cache

* up to 4TB of DDR4-3200 of ECC Memory

Entire databases can be placed in-memory, a long way from
measuring 10 cost in blocks of HDDs

Novel encoding and compression schemes of column store
architectures reduce need for RAM access even further

-(é University at Buffalo The State University of New York

Modern Hardware

Three levels of parallelism are found in modern processors
* Thread parallelism

* Instruction-level parallelism

* Data parallelism

Mainstream CPUs feature superscalar pipelines, out-of-order
execution for multiple instructions and advanced SIMD vectors, all
replicated on multiple cores on the same CPU

-(é University at Buffalo The State University of New York

Modern Hardware

An alternate architecture (Intel® MIC)

Remove superscalar pipeline, OOOE, L3 cache

Reduce area, power consumption of individual core and pack
many of them on a single chip

Augment it with large SIMD registers, advanced SIMD instructions
and simultaneous multithreading on top.

Xeon-Phi is not a GPU. It has high FLOP throughput.

https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html

-(é University at Buffalo The State University of New York

Previous Work

Past attempts to make use of the SIMD architecture have
included:

* Optimize sequential access operators (index, linear scan)
* Multi-way trees which mimic SIMD registers

* Problem-specific operator tweaking with ad-hoc vectorization
(sorting)

.[é University at Buffalo The State University of New York

FUNDAMENTAL
OPERATIONS

Selection Scans,
Hash Tables,
Bloom Filters,

Partitioning

% University at Buffalo The State University of New York

Some Primitives
A/B/ICIDIEIFIGIH|I|[J|/KILIM|IN|O|P

* Selective Store vector

memory

It takes a subset of vector lanes and stores it

* ‘o[1|o[1[o[1]1|o[1|ol1|olof|1]1| mask
BID|F|G|I |[KIN|OIP

contiguously in memory. The subset is selected

using a mask register. AlBlclDleleEle T TJTKIL ImINTOTR

vector

* Selective Load

1 -

S|ITIUVWX|Y|Z

It takes a contiguous section of memory and writes it

memory

onto a subset of vector lanes specified by a mask. ’ oltoftoftiaoftoftoloaftl] mask ector
Inactive lanes retain their data. A|R|C[S|E|T|UH|V|J|W|L|M|X|Y|Z

Q\

7 K

% University at Buffalo The State University of New York

Some Primitives

* Gather

This operation loads non-contiguous data from
memory using a vector of indices and a pointer.

* Scatter

This operation executes stores to various locations
using the index vector and the array pointer.

AB|ICIDIE|F|GH|I |[J|K|LIMINIOIP|Q|R|S|TIUIVW|X|Y|Z|! @ #|$|%|*
cli[amlwlTIR[@M[1 [P[B]P[J|A]X] vaser
AIBICIDIE|IFIGIH|I|J|K|ILIM|N|O|P | vale

vector
219|0|12|30(19(17(27|12|26|15| 1 [15| 9 [31|23| index
vector

'i% memorys ; % % f ——;— ;J; %v

CILIA N | M| (G| |F P J[H E|O

Q

-[é University at Buffalo The State University of New York

Selection Scans

Selection Scans have made a comeback for main-memory query
execution, with optimizations such as

* bit compression
* statistics generation

* bitmap/zone map scanning

% University at Buffalo The State University of New York

_---3 Algorithm 1 Selection Scan (Scalar - Branching)

4
Y4
/

Selection Scans /

I
I

Linear selection scan with branches (Algori.thm 1)
can be prone to branch mispredictions. Converting
control flow to data flow can affect performance,
making different approaches optimal per selectivity
rate. ,mTTs

'
'

Branchless algorithm can avoid the first penalty at
the cost of accessing all payload columns and
eagerly evaluating all selective predicates.

7+0 > output index
for i < 0 to |Tkeys in| — 1 do
k & Tgeys.inlt] > access key columns

if (k> kijower) && (k < kupper) then > short circuit and

Tpayloads_out [.7] — Tpayloads_in [z] > copy all columns
Tkeys-out [.7] —k
J<J+1
end if
end for

~y Algorithm 2 Selection Scan (Scalar - Branchless)

j<0 > output index
for i < 0 to |Tkeys in| — 1 do
k < Tkeys-in[i]
Tpayloads_out [.7] — Tpa.yloads_in [7']
Tkeys-out [J] —k
m (k2 Kiower 7 1: 0) & (k< kupper 7 1: 0)
je<J3+m > if-then-else expressions use conditional ...
end for > ... flags to update the index without branching

> copy all columns

% University at Buffalo The State University of New York

O
Algorithm 3 Selection Scan (Vector)

,5,l+ 0 > tnput, output, and buffer indexes
. 7+ {0,1,2,3,...,.W —1} > input indexes in vector
Se I eCtI O n Sca n S for i < 0 to |Tieys in| — 1 step W do > # of vector lanes
Kk« Treyainlt] > load vectors of key columns
. . . m <— (E 2 Kiswer) & (E < kupper) > predicates to mask
The vectorized algorithm makes use of the selective store if m # false then o SsopionalBrand
C . - . B[l] +m T > selectively store indezxes
primitive to store all the qualified tuples in the vector at once. L 1+ |m| > update buffer index
. - . . . if l > |B| — W then > flush buffer

A small index cache of qualifiers is used instead of storing actual for b« 0 to |B| — W step W do
.) . p <+ BI[Y] > load input indezes
record values. When this buffer is full, the indexes are reloaded, k < Theys.in[P] > dereference values

and the actual columns are read and flushed to the output.

Xeon Phi provides a method like a streaming store to write a
vector directly to a cache line without loading it, removing the
need for the buffer write.

O Tpayloads-in[ﬁ]
Tkeys outlb + 3] < k > flush to output with ...
Tpayloads_outld + 3] — ¥ b ... streaming stores

end for
P« B[|B| — W] > move overflow ...
B[0] < p > ... indexes to start
j<j+|B|-W > update output index
l«1l—|B|+W > update buffer index
end if
end if
r<r+W > update index vector
end for > flush last items after the loop

% University at Buffalo The State University of New York

Hash Tables

Hash tables have uses in the execution of joins and
aggregations as they allow constant time key
lookups.

SIMD has been utilized to build bucketized hash
tables, where a probing key can be compared to
multiple hash keys by horizontal vectorization.

However, this method has diminishing results if the
number of buckets to be searched is less.

Algorithm 4 Linear Probing - Probe (Scalar)

j+<0 > output tndex
for i <— 0 to |Skeys| — 1 do > outer (probing) relation
k < Skeys[i]

v < Spayloads [2]
h+< (k-f) x1|T| > “X 17: multiply € keep upper half
while Tyeys[h] # kempty do > until empty bucket
if £k = Tkeys[h] then
RSR_pa,yloads [.7] = Tpayloads [h]
RSS_payloads [,7] —v
RSkeys[j] +—k
j+—j+1
end if
h<h+1
if h = |T| then
h+ 0
end if
end while
end for

> inner payloads
> outer payloads
> join keys

> next bucket
> reset if last bucket

% University at Buffalo The State University of New York

‘o)
Algorithm 5 Linear Probing - Probe (Vector)
,,7 <0 > input & output indexes (scalar register)
H aS h Ta b I eS 0+ 0 > linear probing offsets (vector register)
m < true > boolean vector register
. L _ while i + W < |Skeys in| do > W: # of vector lanes
A generic form of vectorization is proposed, vertical - : : :
S ' . k <m Skeys[i] > selectively load input tuples
vectorization, that can be applied to any hash table without 7 m Spayioadsli]
modification. i+ 14 |m|
o : h (k-f) x 1T > multiplicative hashing
The principle is to process a hash Ifey in each vector lane. P .add oiicia © Rnoverilons
Thus, each vector lane accesses different hash table he (h<|T)?h: (h—|T|) > “m 2 Z : §” vector blend
location. kp + Tkeys[ﬁ] > gather buckets

This paper test three different hash table variations, linear
probing, double hashing and cuckoo hashing.

The hash function used is multiplicative hashing.

"7T — Tpayloads [’_i]

m < ET = E

RSkeys[i] +m k > selectively store matching tuples
RSS-payloads [.7] —m T

RSR_payloads [.7] m 'UT

j+J+|m|
m 4— kT = kempty > discard finished tuples
o+—m?0: (0+1) > tncrement or reset offsets

end while

% University at Buffalo The State University of New York

Linear Probing

Linear probing is an open addressing scheme which linear
traverses the hash table until an empty bucket is found, or

search is terminated. Algorithm 4 shows the scalar method.

Algorithm 5 shows the vector method where the lanes are
filled by a gather operation. The lanes for unmatched keys

are reused by selective load to avoid the use of nested loops.

The matched keys are selectively stored in memory.

An offset vector is maintained to count how far a key has
searched(looped), if the key is overwritten, then the offset
counter is reset.

The dynamic nature of this probing makes the algorithm
unstable.

Building a linear probing table is similar.

o
Algorithm 5 Linear Probing - Probe (Vector)
1,70 > input & output indexes (scalar register)
0+ 0 > linear probing offsets (vector register)
m < true > boolean vector register
while i + W < |Skeys in| do > W: # of vector lanes
Eota Sregalt > selectively load input tuples
U <m Spayloads [7']
i 1+ |m|
h (k- f) x 1T > multiplicative hashing
h<h+3o > add offsets & fix overflows
h (R<|T|)? h: (h—|T|) >“m 2 & : §” vector blend
kp Tkeys[ﬁ] > gather buckets

"7T — Tpayloads [ﬁ]

m < ET = E

RSkeys[i] +m k > selectively store matching tuples
RSS_payloads [.7] —m T

RSR_payloads [.7] —m UT

j+J+|m|
m 4— kT = kempty > discard finished tuples
o+—m?0: (0+1) > tncrement or reset offsets

end while

% University at Buffalo The State University of New York

Linear Probing

The vectorized build happens in a similar out-of-order fashion
where the lanes are reused as soon as the keys are inserted.
The lanes are filled and emptied with gathers to check if the
bucket is empty and scatters only if the bucket is empty.

There is conflict detection step before the scatter operation to
avoid clashing of keys.

* Arudimentary way is to scatter is sequential array and
gather it again to check for repeats.

* AVX3 and later have a special instruction vpconflictd
which streamlines the conflict detection process.

* If the keys are unique then that itself can be scattered to
check conflict.

o
Algorithm 6 Linear Probing - Build (Scalar)
for i <~ 0 to |Ryeys| — 1 do > inner (building) relation
k < Rkeys[i]
h< (k-f) x1|T] > multiplicative hashing
while Tjeys[h] # kempty do > until empty bucket
h<—h+1 > next bucket
if h = |T'| then
h <+ 0 > reset if last
end if
end while
Theys|h] < k > set empty bucket
Tpayloads [h] <~ Rpayloads [7']
end for
Q\
15 « S

% University at Buffalo The State University of New York

Double Hashing

Double hashing is used to handle the case of duplicate keys,

where linear probing would lead to collisions by clustering
duplicate keys in the same region.

Double hashing distributes collision such that number of
buckets accessed is close to number of true matches.

Thus, we can get away with repeating the keys.

Algorithm 8 describes the proposed function.

Algorithm 7 Linear Probing - Build (Vector)

U {1,2,3,...,W} b any vector with unique values per lane
2,5 < 0, m < true > input & output index & bitmask
0+ 0 > linear probing offset
while i + W < |Rpeys| do
k+m Rkeys [1,]
U 4m Rpayloads [3]
i i+ |m|
h o+ (k-f) x 1T > multiplicative hashing
h —(h< 7)) ? h: (h—|T)) > fiz overflows
kp « Tkeys[h] > gather buckets
m ET = Kempty > find empty buckets
T[h] I > detect conflicts
lback —m Tkeys[h]
m+—mé& (l = lba.ck:)
Tk:eys [h] “—m k
Tpayloads [h] m T > ... if not conflicting
0+m?70: (0+1) > tncrement or reset offsets
end while

> selectively load input tuples

> scatter to buckets ...

Algorithm 8 Double Hashing Function

fLem?fi: fo

fo <m?|T|: (T -1)
h(—m'?O (h-I-l) > ...
h+h+ (kx| fL) x1 fu)
h (R<|T|)? h: (h—|T])

> pick multiplicative hash factor
> the collision bucket ...

18 never repeated
> multiplicative hashing

> fix overflows (no modulo)

% University at Buffalo The State University of New York

Cuckoo Hashing

Cuckoo hashing allows for direct comparison with the previous
horizontal vectorization solution and the proposed vertical
vectorization solution.

This hashing scheme also uses multiple hash functions.

The scalar algorithm for this method can be written one of two

ways:

* Check the second bracket only if the first doesn’t match. This
branching is prone to mis-predications.

* Check both buckets and blend the results using bitwise

operations. Even with extra memory access this method is
faster on CPUs.

Algorithm 9 Cuckoo Hashing - Probing

g +0

for i «+— 0 to |S| — 1 step W do

k < Skeys [7]
U & Spayloads [z]
h1 — (k i) x4 |7
h2 — (k f2) X ¥ |7
kT = Tkeys[hI] .
'l_;T T Tpayloads [hl]
m — E 75 ET .
kT <m Tkeys[h2]
UT < m Tpayloads [h‘2]
m < k — kT .
RSkeys[]] —m k
RSS_payloads [.7] —m U
RSR_payloads [.7] m 77T
j < 3J+Im|

end for

> load input tuples

> 1%t hash function
> 2"% hash function
> gather 15t function bucket

> gather 2"¢ function bucket ...
> ... if 15 is not matching

> selectively store matches

% University at Buffalo The State University of New York

Cuckoo Hashing

Algorithm 9 shows the simple vectorized probing of Cuckoo hashing.

After loading W keys, we gather the first bucket for each of those who
match. For the keys that don’t match we gather the second bucket.

The algorithm is stable when the input is read in order.

Vectorized Cuckoo table building is shown in Algorithm 10. Only those
keys which conflict or those which were displaced after conflict check
persist through the loop, the rest of the lanes are reused.

Algorithm 10 Cuckoo Hashing - Building

1,7 + 0, m « true
while : + W < |R| do
k —m Rkeys_in [7']
U 4m Rpayloads_'i,n [2]
i+ i+ |m|
hi < (k- f1) x 1 |B]|
f_?;g (—_‘(k . [‘2) X_T |B|
h< hy+ha—h
}-_7,:(— m? f_;l _’ }_7:
kT = Tkeys[h] .
17T = Tpaylo_?ds [h’]
m < m & (kT # Kempty)
E(—— m? }_52 : E
kr <m Tkeys[h] .
'UT <_TE Tpagiloa.ds [h]
Tkeys[h] (—_’k
Tpayloads [h] = 1_)’
kback i_ Tfeys[h]
Cn —k 5& Eback_’
k«—m?7kp:k
Tem? o T
m <+ k = kempty
end while

> selectively load new ...
> ... tuples from the input

> 1%t hash function

> 2" hash function

> use other function if old
> use 15t function if new
> gather buckets for ...

> ... new & old tuples
> use 2" function if new ...

> ... & 15 is non-matching
> selectively (re)gather ...

> ... for new using 2™¢

> scatter all tuples ...

> ... to store or swap

> gather (unique) keys ...
> ... to detect conflicts

> conflicting tuples are ...

> ... kept to be (re)inserted
> inserted tuples are replaced

-(é University at Buffalo The State University of New York

Bloom Filters

Bloom filters are used to apply selective conditions across tables
before joining them.

A record qualifies from the filter, if k specific bits are set in the filter,
based on k hash functions.

Vectorized bloom filter has a great performance especially when it is
cache resident. It is implemented using standard procedure and does

need any vector operations to be defined.

-[é University at Buffalo The State University of New York

Partitioning

Partitioning is a ubiquitous operation
that splits large input into cache
conscious non-overlapping sub
problems.

Three types of schemes are discussed
* Radix
* Hash

°* Range

-[é University at Buffalo The state University of New York

Partitioning S S S —
Algorithm 11 Radix Partitioning - Histogram
Prior to moving any data, boundaries 0+ {0,1,2,3,...., W —1}
are set using a histogram. Hpartial|[P X W] <0 > initialize replicated histograms
for ¢ <— 0 to |Tkeys in| — 1 step W do
Vectorized radix and hash histogram B Theys.inli]
generation is shown in algorithm 11. It h<+ (k<<br)>>bg > radiz function
uses gathers and scatters to increment h« 6+ (i_i - VI_{) > index for multiple histograms
counts based on partition function of G Hpaf“jfal [h] > increment W counts
Hpa'rtial hl|+—c+1

each key. end for
Even if multiple lanes scatter to the for 1<~ 0to P—1do
same histogram count, conflicts are C ¢ Hpartiatli - W] > load W counts of partition

, , , H]i] < sum_across(¢) > reduce into single result
avoided by isolating each lane. ——

21 « X

% University at Buffalo The State University of New York

Partitioning

Range histogram is slower than radix

and hash functions, as it uses binary Algorithm 12 Range Partitioning Function

Even if array is cache-resident, the for i < 0 to log P —1 do ,

. _ N _ a+— (Il+h)>>1 > compute middle
cache hit latency in the critical path is i o D[@ — 1] > gather splitters
exposed. m < k>d . > compare with splitters

_ _ _ < m7?7a:l > select upper half
A SIMD index is used as a horizontal I > select lower half
vectorization for binary search to be end for
evaluated over simple and complex
cores. Q

% University at Buffalo The State University of New York

—_ O
Algorithm 13 Conflict Serialization Function (h, A)
l:<— {W -1, W-—-2,W-3,.., 0} > reversing mask
g . h < permute(h, l_ﬁ > reverse hashes
Pa rtltl O n I n g c+ 0, m <« true > serialization offsets & conflict mask
repea_@ .
. o AR ml > detect conflicts
The shuffling phase of partitioning lyack +m A[h]
)) m <« m & (I # lpgek) > update conflicting lanes
involves moving the data tupIeS / C+—m?(C+1):¢ > increment offsets ...
records. The prefix sum of histograms is N et Pk YR CORJiEC NPT
return permute(c,[) > reverse to original order
used as partition offsets and is updated
Algorithm 14 Radix Partitioning - Shuffling
for every tuple transferred. O < prefix sum(H) > partition offsets from histogram
: : for i < 0 to |T; in| — 1 st d
Algorithm 13 handles the conflict OF éi¢- 040 [Tiega.sn|—15tep Wido ,
k < Treys_inli] > load input tuples
management for the vectorized shuffling ¥ < Tpayloads_in|]
- - h + (k<< br) >>br > radiz function
where multiple lanes might go to the 5« O[F] > gather partition offsets
same partition in the same operation. ¢ <+ serialize_conflicts(h, O) > serialize conflicts
o = o+¢ > add serialization offsets
The actual shuffling is shown in 14 O[h] +~0o+1 > scatter incremented offsets Q
Theys outlo] ==k > scatter tuples g
Tpayloads-out [0] « ¥ \\
end for 23 o "

% University at Buffalo The State University of New York

Algorithm 15 Radix Partitioning - Buffered Shuffling

O < prefix sum(H) > partition offsets from histogram
for i <— 0 to |Tkeys in| — 1 step W do

P a rt i ti O n i n g k « Treys_inli] > load input tuples

O Tpayloads_in [7']

h (Ef< br) >> br > radiz function
. . 0« O[h] > gather partition offsets
Non-buffered Sthﬂlng IS great when ¢ « serialize_conflicts(h, O) > serialize conflicts
' ' i 04=:0FC dd serializati t
input is cache-resident but has a host of Ol 541 e G e
bl h . is | . . op+— o0& (W-1) > buffer offsets in partition
problems when InpUt IS arger In SiZe m<+op <W > find non-overflowing lanes
: . m' < !m
SUCh aS TLB thraShlng, CaChe Confllcts, 6B ~— 6B + (’-; .-W) > buﬁer Oﬁsets across partztzons
TR Bi.syslo: e tter tuples to b
and cache associativity set limitations. It B’;azlifs][;] e® B dor nf,;_:,‘,f,’ei;ozm';ﬁizes
. . . o = (W —1 dl to b hed
is true even for the vectorized shuffling. ;?;;Bfals(f then) P T e Bk
H[0] <m h > pack partitions to be flushed
A proposed solution for this is to keep for}z‘ <—2E;]> Im| -1 do
(._
data in buffers and flush them in 0+ (Olh] & -W) -W > output location
kB < Bgeys[h - W] > load tuples from buffer
groups. Then we keep these buffers UB < Bpayloads[h - W]
) Treysoutlo] — kB > flush tuples to output ...
small and packed together in cache. Tpayloads out|0] < T b ... using streaming stores
end for
Bieys[0B — W] k > scatter tuples to buffer ...
Bpayloads|0B — W] <=y U > ... for overflowing lanes
end if

end for > cleanup the buffers after the loop

-(é University at Buffalo The State University of New York

Sorting

We use sorting largely in join and
aggregation operations. They are also
used for de-clustering, compression,
deduplication, etc.

Large-scale sorting is shown to be
synonymous to partitioning. So, we
implement LSB radix sort for 32-bit
keys.

Histogram generation and shuffling
operate shared-nothing, maximizing
thread parallelism.

By using vectorized buffered
partitioning, we also maximize data
parallelism.

-(é University at Buffalo The State University of New York

Hash Join

Main memory equi-joins include sort-
merge joins and hash joins. In the
baseline hash join, the inner relation is
built into a hash table and the outer
relation probes the hash table to find
matches.

Three variants of hash joins are
implemented.

* No partition: A shared hash table is
used across threads using atomic

operations. Cannot be SIMD as atomic

operations are not supported.

* Min partition: Inner relation is

partitioned into T(# thread) parts,
creating T hash tables which are not
shared. Entire algorithm can be
vectorized.

Max partition: Both inner and outer
relations are partitioned such that
inner partition is small enough to fit in
a cache-resident hash table. Fully
vectorized.

.[é University at Buffalo The State University of New York

EXPERIMENTAL
EVALUATION

Xeon Phi
Haswell Xeon

4x Sandy Bridge Xeon

% University at Buffalo The state University of New York

Test Platform

Three platforms are used for evaluation.

e Xeon Phi co-processor based on the
MIC design.

* Haswell Xeon with 256-bit SIMD
registers to compare scalar and
S.O.T.A. vector solutions.

* 4x Sandy Bridge Xeons to measure
aggregate performance and
efficiency.

O

Platform 1 CoPU 1 CPU 4 CPUs
Market Name Xeon Phi Xeon Xeon
Market Model 7120P E3-1275v3 E5-4620
Clock Frequency 1.238 GHz 3.5 GHz 2.2 GHz
Cores x SMT 61 x 4 4% 2 (4% 8) X 2
Core Architecture P54C Haswell Sandy Bridge
Issue Width 2-way 8-way 6-way
Reorder Buffer N/A 192-entry 168-entry
L1 Size / Core 32432 KB | 32+32 KB 32432 KB
L2 Size / Core 512 KB 256 KB 256 KB
L3 Size (Total) 0 8 MB 4 x 16 MB
Memory Capacity 16 GB 32 GB 512 GB
Load Bandwidth 212 GB/s | 21.8 GB/s 122 GB/s
Copy Bandwidth 80 GB/s 9.3 GB/s 38 GB/s
SIMD Width 512-bit 256-bit 128-bit
Gather & Scatter | Yes & Yes | Yes & No No & No
Power (TDP) 300 W 84 W 4 x 130 W

Table 1: Experimental platforms

% University at Buffalo The State University of New York

o
SeleCthn SCanS ==@==Scalar (branching) ==g==Scalar (branchless [29])
=== \/ector (bit extract, direct) Vector (sel. store, direct)
We vary the selectivity and measure the === \/ector (bit extract, indirect) —=@==\/ector (sel. store, indirect)
throughput of six selection scan 48
versions, two scalar with and without 2 40
o
branching, and four vectorized using e @ 32
SR a2 N
two orthogonal design choices. £ v 24
3 o 16
<
L =
= c .
Q2
L 0
) ©O < N 1IN O O O O O - N In O O O O
n o n O
i i

Xeon Phi o Haswell
Selectivity (%)

Figure 5: Selection scan (32-bit key & payload)
29 « X

O B N W H» U1 O

% University at Buffalo The State University of New York

O

Hash Tables

Fig 6 shows Linear probing and double
hashing.

Fig 7 shows probing throughput of
Cuckoo hashing.

Fig 8 shows 1:1 interleaved build and
probe of shared-nothing tables

Fig 9 shows 1:10 interleaved build and
probe of shared-nothing tables.

=i P Scalar
e P Vector (horizontal)
=== P Vector (vertical)

w=g==DH Scalar
DH Vector (horizontal)
-=@=-=DH Vector (vertical)

3.5

£} 3

 —

S 2.5
H a 2
a : 15
¥ o 1
o 2 0
£ 2 5
= c 0

2 sgegeggssz ggessees

S < © © < © ©

e 3 Ry g3 R ~eagy
Xeon Phi Haswell

Hash table size

Figure 6: Probe linear probing & double hashing
tables (shared, 32-bit key — 32-bit probed payload)

m Scalar m Vector

CH

second)
o = N W A Un;

Throughput
(billion tuples /

L1 cache L2 cache RAM

Figure 8: Build & probe linear probing, double
hashing, & cuckoo hashing on Xeon Phi (1:1 build—
probe, shared-nothing, 2X 32-bit key & payload)

=== Scalar (branching)
w=gde==\/ector (horizontal [30])
-@-=\/ector (vertical select)

=== Scalar (branchless [42])
Vector (vertical blend)

14 35
§ 12 3
8 10 25
é a 8 2
iy 6 15
?% 4 1
=2 2 = 0.5
- c 0 L @ - 0
S |ggeoeoggeg |gssoggeg
= e ﬁ o< 9y R S § v 9oy
Xeon Phi Haswell

Hash table size

Figure 7: Probe cuckoo hashing table (2 functions,
shared, 32-bit key — 32-bit probed payload)

m Vector

| | | W Scalar
i R 1§ II II II II II II
LP DH CH LP DH LP DH LP DH

5 repeats
20% match

Throughput
(billion tuples / second)
O = N W & U O

no repeats allowed = 1.25repeats 2.5 repeats
100% of keys match ~ 80% match 40% match

Figure 9: Build & probe linear probing, double
hashing, & cuckoo hashing on Xeon Phi (1:10 build—
probe, L1, shared-nothing, 2X 32-bit key & payload)

% University at Buffalo The State University of New York

O
Fig 10 shows bloom filter probing = —#—Scalar 3
. . © 10 =@ \/ector 2.5
throughput with selective loads and S 8 2
= @
stores. 22 O 1.5
®yg 4 !
=5 —
o 2 2 0.5
S °
= RSS2 25555 L2222 353353
2 YAE¥g-<vgg THITHE-<YgI
Xeon Phi Haswell

Bloom filter size

Figure 10: Bloom filter probing (5 functions, shared,
10 bits / item, 5% selectivity, 32-bit key & payload)

% University at Buffalo The State University of New York

O
25 ==@==\/ector hash/radix
Bgw . s 20 (repl. & compress)
Pa rtltl O n I n g §_ 3 _ ====\/ector hash/radix
< §' T 15 (replicate counts)
3 S § 10 ~5 w=de==\/ector hash/radix
* Figure 11 shows radix and hash R L (serialize conflicts)
. _ . 2 Scalar radix
histogram generation on Xeon Phi. g
3 45 6 7 8 9 1011 12 13 SNe=Scalar hash
* Figure 12 shows the performance of Fanout (log # of partitions)
computing the range partition Figure 11: Radix & hash histogram on Xeon Phi
. w=e== Scalar (branching) === Scalar (branchless) i ' _
fu nction. = w=ge=\/ector (binary search) Vector (tree index [26]) 7 =& Vector hash
G 24 9 6 = 6 (buffered)
* Figure 13 measures shuffling on 58 2 5 235 > SC i
& 1% 17 9x9 4 w32 5 4 (buffered)
. . . %n§ 1 3 § c g 3 ==e=\/ector radix
Xeon Phi using inputs larger than the g5 2 T : 9919 wes, £2% s
£ ; 4 1 = 1 Scalar radi
cache. S) Atetttppttetd 0 0 (buffered)lx
2 PERTIRNAAIIRS PASNTIXRAAIIRS 34567 89 10111213 _egealar radix
A0SR R~ Fanout (log # of partitions) (unbuffered)
Xeonte Fanout Haswel Figure 13: Radix shuffling on Xeon Phi (shared-

Figure 12: Range function on Xeon Phi (32-bit key) nothing, out-of-cache, 32-bit key & payload)

32 « X

-(é University at Buffalo The State University of New York

O

Sorting and Hash Join

2.5 mScalar
2 M Vector
1.5
1 h i
. 0.5
Figure 14 shows the performance of . . e - I. I 1 I. I
100 200 400 800 = 100 200 400 800

Time (seconds)

LSB radixsort on Xeon Phi.

Figure 15 shows the performance of the 32-bit key 32-bit key & payload
Tuples (in millions)

three hash join variants as described in
Figure 14: Radixsort on Xeon Phi (LSB)

Section 9, on Xeon Phi.
= Build & Probe Probe & Build Il Partition

Time (seconds)
o [
o (9] = (92 N

l ” i
Scalar Vector Scalar Vector Scalar Vector

No partition Min partition Max partition

Figure 15: Multiple hash join variants on Xeon Phi
(9 .108% 549 . T0® 39 b3t koxr £7 naviaad)

% University at Buffalo The State University of New York

Sorting and Hash Join

Figure 16 shows the thread scalability
of radix sort and partitioned hash join on
Xeon Phi.

500

Time (seconds)
[logscale]
o wn
w (6} o

e \/ector

R

e=@==Scalar

— (99] ™~ LN (@] i N < L} (99] ™~ (¥p) o i N <
- M WO N < T N W N <
i oN i N

Radixsort Hash Join

Threads

Figure 16: Radixsort & hash join scalability (4 -10°
& 2-10° 12-10° 32-bit key & payload, log/log scale)

% University at Buffalo The State University of New York

O
SOrtI ng and HaSh JO' N = Build & Probe (join) 1l Partition (join) N NUMA Split
Shuffling (sort) Histogram (sort)

We now compare Xeon Phi to 4 Sandy 1

)
Bridge (SB) CPUs in order to get 'g 0.8 5 ——
comparable performance, using radix g 06 , T
sort and hash join. 2 04 T N

S 02 N NN

-, B il

Sort Join Sort

32 S.B. cores 61 P54C cores 32 S.B. cores 61 P54C cores
@ 2.201 GHz @ 1.238 GHz @ 1.200 GHz @ 1.238 GHz
(38 GB/s) (80 GB/s) (38 GB/s) (40 GB/s)

Figure 17: Radixsort & hash join on Xeon Phi 7120P
versus 4 Xeon E5 4620 CPUs (sort 4-10° tuples, join
2-10° <1 2-10° tuples, 32-bit key & payload per table)

35 « A

-(ﬁ University at Buffalo The State University of New York

Sorting and Hash Join

Figure 18 measures radix sort with 32-
bit keys by varying the number and

: 1
width of payload columns.)
GEJ <= 05 l l
wv
— ol ol o D‘Xg\& D‘X;\’& b‘)o'\& D‘X_.;\x
X*% AR 10 g\g’L x‘lﬁ 1‘!\6 '5*6 nh©

Figure 18: Radixsort with varying payloads on Xeon
Phi (2 - 10° tuples, 32-bit key)

-[é University at Buffalo The State University of New York

Sorting and Hash Join

* Figure 19 shows partitioned hash join
with 32-bit keys and multiple 64-bit

payload columns. — 04
(D'D
A BN NN |
|: (&)
s 0
4:1 3:1 2:1 1:1 1:2 1:3 1:4

Number of 64-bit payload columns (R : S)

Figure 19: Hash join with varying payload columns
on Xeon Phi (10 < 10® tuples, 32-bit keys)

