
RETHINKING SIMD 
VECTORIZATION FOR IN-
MEMORY DATABASES
Orestis Polychroniou

Arun Raghavan

Kenneth A. Ross



2

Modern Hardware
Today’s servers have large amounts of main memory

For example, AMD Epyc 7763

• 256MB of cache

• up to 4TB of DDR4-3200 of ECC Memory

Entire databases can be placed in-memory, a long way from 
measuring IO cost in blocks of HDDs

Novel encoding and compression schemes of column store 
architectures reduce need for RAM access even further



3

Modern Hardware
Three levels of parallelism are found in modern processors

• Thread parallelism

• Instruction-level parallelism

• Data parallelism

Mainstream CPUs feature superscalar pipelines, out-of-order
execution for multiple instructions and advanced SIMD vectors, all 
replicated on multiple cores on the same CPU



4

Modern Hardware
An alternate architecture (Intel® MIC)

Remove superscalar pipeline, OOOE, L3 cache

Reduce area, power consumption of individual core and pack 
many of them on a single chip

Augment it with large SIMD registers, advanced SIMD instructions 
and simultaneous multithreading on top.

Xeon-Phi is not a GPU. It has high FLOP throughput.

https://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html


5

Previous Work
Past attempts to make use of the SIMD architecture have
included:

• Optimize sequential access operators (index, linear scan)

• Multi-way trees which mimic SIMD registers

• Problem-specific operator tweaking with ad-hoc vectorization 
(sorting)



FUNDAMENTAL 
OPERATIONS
Selection Scans,

Hash Tables,

Bloom Filters,

Partitioning



7

Some Primitives
• Selective Store

It takes a subset of vector lanes and stores it 
contiguously in memory. The subset is selected 
using a mask register.

• Selective Load

It takes a contiguous section of memory and writes it
onto a subset of vector lanes specified by a mask. 
Inactive lanes retain their data.



8

Some Primitives
• Gather

This operation loads non-contiguous data from
memory using a vector of indices and a pointer.

• Scatter

This operation executes stores to various locations 
using the index vector and the array pointer.



9

Selection Scans
Selection Scans have made a comeback for main-memory query 
execution, with optimizations such as

• bit compression

• statistics generation

• bitmap/zone map scanning



10

Selection Scans
Linear selection scan with branches (Algorithm 1) 
can be prone to branch mispredictions. Converting
control flow to data flow can affect performance, 
making different approaches optimal per selectivity 
rate.

Branchless algorithm can avoid the first penalty at 
the cost of accessing all payload columns and 
eagerly evaluating all selective predicates.



11

Selection Scans
The vectorized algorithm makes use of the selective store 
primitive to store all the qualified tuples in the vector at once.

A small index cache of qualifiers is used instead of storing actual 
record values. When this buffer is full, the indexes are reloaded, 
and the actual columns are read and flushed to the output.

Xeon Phi provides a method like a streaming store to write a
vector directly to a cache line without loading it, removing the 
need for the buffer write.



12

Hash Tables
Hash tables have uses in the execution of joins and 
aggregations as they allow constant time key
lookups.

SIMD has been utilized to build bucketized hash 
tables, where a probing key can be compared to 
multiple hash keys by horizontal vectorization.

However, this method has diminishing results if the 
number of buckets to be searched is less.



13

Hash Tables
A generic form of vectorization is proposed, vertical 
vectorization, that can be applied to any hash table without 
modification.

The principle is to process a hash key in each vector lane. 
Thus, each vector lane accesses different hash table 
location.

This paper test three different hash table variations, linear 
probing, double hashing and cuckoo hashing.

The hash function used is multiplicative hashing. 



14

Linear Probing
Linear probing is an open addressing scheme which linear 
traverses the hash table until an empty bucket is found, or 
search is terminated. Algorithm 4 shows the scalar method.

Algorithm 5 shows the vector method where the lanes are 
filled by a gather operation. The lanes for unmatched keys
are reused by selective load to avoid the use of nested loops. 
The matched keys are selectively stored in memory.

An offset vector is maintained to count how far a key has
searched(looped), if the key is overwritten, then the offset 
counter is reset.

The dynamic nature of this probing makes the algorithm 
unstable.

Building a linear probing table is similar.



15

Linear Probing
The vectorized build happens in a similar out-of-order fashion 
where the lanes are reused as soon as the keys are inserted. 
The lanes are filled and emptied with gathers to check if the 
bucket is empty and scatters only if the bucket is empty.

There is conflict detection step before the scatter operation to 
avoid clashing of keys.

• A rudimentary way is to scatter is sequential array and 
gather it again to check for repeats.

• AVX3 and later have a special instruction 𝑣𝑝𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑑
which streamlines the conflict detection process.

• If the keys are unique then that itself can be scattered to 
check conflict.



16

Double Hashing
Double hashing is used to handle the case of duplicate keys, 
where linear probing would lead to collisions by clustering 
duplicate keys in the same region.

Double hashing distributes collision such that number of
buckets accessed is close to number of true matches.

Thus, we can get away with repeating the keys.

Algorithm 8 describes the proposed function.



17

Cuckoo Hashing
Cuckoo hashing allows for direct comparison with the previous 
horizontal vectorization solution and the proposed vertical 
vectorization solution.

This hashing scheme also uses multiple hash functions.

The scalar algorithm for this method can be written one of two 
ways:

• Check the second bracket only if the first doesn’t match. This 
branching is prone to mis-predications.

• Check both buckets and blend the results using bitwise 
operations. Even with extra memory access this method is 
faster on CPUs.



18

Cuckoo Hashing
Algorithm 9 shows the simple vectorized probing of Cuckoo hashing.

After loading W keys, we gather the first bucket for each of those who 
match. For the keys that don’t match we gather the second bucket.

The algorithm is stable when the input is read in order.

Vectorized Cuckoo table building is shown in Algorithm 10. Only those
keys which conflict or those which were displaced after conflict check
persist through the loop, the rest of the lanes are reused.



19

Bloom Filters
Bloom filters are used to apply selective conditions across tables 
before joining them.

A record qualifies from the filter, if k specific bits are set in the filter, 
based on k hash functions.

Vectorized bloom filter has a great performance especially when it is 
cache resident. It is implemented using standard procedure and does 
need any vector operations to be defined.



20

Partitioning
Partitioning is a ubiquitous operation 
that splits large input into cache 
conscious non-overlapping sub 
problems.

Three types of schemes are discussed

• Radix

• Hash

• Range



21

Partitioning
Prior to moving any data, boundaries 
are set using a histogram.

Vectorized radix and hash histogram 
generation is shown in algorithm 11. It 
uses gathers and scatters to increment 
counts based on partition function of 
each key.

Even if multiple lanes scatter to the
same histogram count, conflicts are 
avoided by isolating each lane.



22

Partitioning
Range histogram is slower than radix 
and hash functions, as it uses binary 
search over a sorted array of splitters.

Even if array is cache-resident, the 
cache hit latency in the critical path is 
exposed.

A SIMD index is used as a horizontal
vectorization for binary search to be
evaluated over simple and complex 
cores.



23

Partitioning
The shuffling phase of partitioning 
involves moving the data tuples / 
records. The prefix sum of histograms is 
used as partition offsets and is updated 
for every tuple transferred.

Algorithm 13 handles the conflict 
management for the vectorized shuffling 
where multiple lanes might go to the 
same partition in the same operation.

The actual shuffling is shown in 14



24

Partitioning
Non-buffered shuffling is great when
input is cache-resident but has a host of 
problems when input is larger in size 
such as TLB thrashing, cache conflicts, 
and cache associativity set limitations. It 
is true even for the vectorized shuffling.

A proposed solution for this is to keep 
data in buffers and flush them in 
groups. Then we keep these buffers 
small and packed together in cache.



25

Sorting
We use sorting largely in join and 
aggregation operations. They are also 
used for de-clustering, compression, 
deduplication, etc.

Large-scale sorting is shown to be
synonymous to partitioning. So, we 
implement LSB radix sort for 32-bit 
keys.

Histogram generation and shuffling 
operate shared-nothing, maximizing 
thread parallelism.

By using vectorized buffered 
partitioning, we also maximize data 
parallelism. 



26

Hash Join
Main memory equi-joins include sort-
merge joins and hash joins. In the 
baseline hash join, the inner relation is 
built into a hash table and the outer 
relation probes the hash table to find 
matches. 

Three variants of hash joins are 
implemented.

• No partition: A shared hash table is 
used across threads using atomic 
operations. Cannot be SIMD as atomic 
operations are not supported.

• Min partition: Inner relation is 
partitioned into T(# thread) parts, 
creating T hash tables which are not 
shared. Entire algorithm can be 
vectorized.

• Max partition: Both inner and outer
relations are partitioned such that
inner partition is small enough to fit in 
a cache-resident hash table. Fully 
vectorized.



EXPERIMENTAL 
EVALUATION
Xeon Phi

Haswell Xeon

4x Sandy Bridge Xeon



28

Test Platform
Three platforms are used for evaluation.

• Xeon Phi co-processor based on the
MIC design.

• Haswell Xeon with 256-bit SIMD 
registers to compare scalar and 
S.O.T.A. vector solutions.

• 4x Sandy Bridge Xeons to measure 
aggregate performance and 
efficiency.



29

Selection Scans
We vary the selectivity and measure the 
throughput of six selection scan 
versions, two scalar with and without 
branching, and four vectorized using 
two orthogonal design choices.



30

Hash Tables
Fig 6 shows Linear probing and double 
hashing.

Fig 7 shows probing throughput of 
Cuckoo hashing.

Fig 8 shows 1:1 interleaved build and
probe of shared-nothing tables

Fig 9 shows 1:10 interleaved build and 
probe of shared-nothing tables.



31

Bloom Filters
Fig 10 shows bloom filter probing 
throughput with selective loads and 
stores.



32

Partitioning
• Figure 11 shows radix and hash 

histogram generation on Xeon Phi.

• Figure 12 shows the performance of 
computing the range partition 
function. 

• Figure 13 measures shuffling on 
Xeon Phi using inputs larger than the 
cache. 



33

Sorting and Hash Join
Figure 14 shows the performance of 
LSB radixsort on Xeon Phi. 

Figure 15 shows the performance of the 
three hash join variants as described in 
Section 9, on Xeon Phi. 



34

Sorting and Hash Join
Figure 16 shows the thread scalability 
of radix sort and partitioned hash join on 
Xeon Phi. 



35

Sorting and Hash Join
We now compare Xeon Phi to 4 Sandy 
Bridge (SB) CPUs in order to get 
comparable performance, using radix 
sort and hash join. 



36

Sorting and Hash Join
Figure 18 measures radix sort with 32-
bit keys by varying the number and 
width of payload columns. 



37

Sorting and Hash Join
• Figure 19 shows partitioned hash join 

with 32-bit keys and multiple 64-bit 
payload columns.


