
CSE 707SEM: Select Topics on Modern
Database Systems (Fall 22)

Lecture 0: Introduction

8/31/2022

About me

CSE707SEM (Fall 2022): Logistics and Introduction 2

• Instructor: Zhuoyue Zhao, zzhao35@buffalo.edu

• Office: Davis Hall 338I

• Course website: https://cse.buffalo.edu/~zzhao35/teaching/cse707_fall22/

• No fixed office hour
• Send me a message on Piazza to schedule one on demand

Course description
• Davis 113A

• Every Wednesday 10:00 AM - 12:50 PM
• We are likely to end early if there’s only one presentation for that week

• No textbook required
• But you’re required to read the papers

• Discussion and communication: https://piazza.com/buffalo/fall2022/cse707/home

• Assignment submission: https://ublearns.buffalo.edu/ultra

• Topics for Fall 2022:
• OnLine Analytical Processing (OLAP) / Exact Queries

• Approximate Query Processing

CSE707SEM (Fall 2022): Logistics and Introduction 3

https://piazza.com/buffalo/fall2022/cse707/home
https://ublearns.buffalo.edu/ultra

Requirements
• We will have up two paper presentation by students each time

• For student who is presenting
• Start early on the presentation (at least one week in advance)

• Send me the presentation slides by the Tuesday 10 AM prior to your presentation
(you’re encouraged to submit the first draft as early as possible)

• I will send you comments on the slides

• Please make yourself available for revising the presentation slides and resubmit before presentation

• The presenter does not need to submit questions and summary for the paper presented

• For all students
• Read the paper before lecture

• Submit three questions for each paper you read by Tuesday 10 AM

• Participate in discussion

• random quizzes throughout the semester

• Submit a short paper summary for each paper by Friday 10 AM

• For weeks with two presentations, the deadline will be extended to Saturday 11:00 PM
CSE707SEM (Fall 2022): Logistics and Introduction 4

Grading
• Grading items

• 8% for the pre-lecture questions (0.5% each)

• 32% for the paper summaries (2% each)

• 30% for the presentation

• 30% for participation

• Based on your attendance, in-class discussion and random quizzes

• Graded at the end of semester

• Satisfactory: >= 75%; Unsatisfactory: < 75%

CSE707SEM (Fall 2022): Logistics and Introduction 5

Course schedule

CSE707SEM (Fall 2022): Logistics and Introduction 6

How to access ACM Digital Library off campus

CSE707SEM (Fall 2022): Logistics and Introduction 7

dl-acm-org.gate.lib.buffalo.edu

replace

How to access ACM Digital Library off campus

CSE707SEM (Fall 2022): Logistics and Introduction 8

Academic Integrity Policies

CSE707SEM (Fall 2022): Logistics and Introduction 9

Accessibility Resources

CSE707SEM (Fall 2022): Logistics and Introduction 10

• Accessibility Resources. If you have any disability which requires reasonable
accommodations to enable you to participate in this course, please contact the Office of
Accessibility Resources in 60 Capen Hall, 716-645-2608 and the instructor of this course
as soon as possible. The office will provide you with information and review appropriate
arrangements for reasonable accommodations, which can be found on the web at:
http://www.buffalo.edu/studentlife/who-weare/departments/accessibility.html.

Today’s agenda
• Quick recap on query processing basics

• Sign up for paper presentations

CSE707SEM (Fall 2022): Logistics and Introduction 11

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

Relational model

CSE707SEM (Fall 2022): Logistics and Introduction 12

student
sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

Database schema
student(sid: integer, name: string, login: string, major: string, adm_year: date)
enrollment(sid: integer, semester: string, cno: integer, grade: float)

Database instance

Record

Relation (instance)

Relation (schema)

Column

Relational algebra
• There are 6 basic operators and commonly used compound operators:

• Selection 𝜎
• Projection 𝜋
• Renaming 𝜌
• Cartesian product ×
• Set difference −
• Union ∪
• Join ⋈

• Inner join
• Natural join

• Outer join
• Set intersection ∩
• Division operator /

• The operators takes relations as input, and outputs a relation
• Schemas of the input/output schema are fixed
• Operators can be composed

• https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring22/files/03-rm.pdf

CSE707SEM (Fall 2022): Logistics and Introduction 13

https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring22/files/03-rm.pdf

Simple select query and relational algebra
• Recall that the basic form of SELECT query can be translated into extended relational algebra

• The conceptual way of answering the query
• With some non-relational operators (notably Sort).

CSE707SEM (Fall 2022): Logistics and Introduction 14

-- SQL with aggregation
SELECT 𝐸′1, 𝐸′2, … , 𝐸′𝑚, 𝐹1 𝐸1

′′ , … , 𝐹𝑘 𝐸𝑘
′′

FROM 𝑅1, 𝑅2, … , 𝑅𝑛
[WHERE 𝑃]
[GROUP BY 𝐸1, 𝐸2, … , 𝐸𝑙
[HAVING 𝑃′]]
[ORDER BY expr [ASC|DESC] [,…]]

-- SQL SELECT with no aggregation
SELECT [DISTINCT] 𝐸1, 𝐸2, … , 𝐸𝑚
FROM 𝑅1, 𝑅2, … , 𝑅𝑛
[WHERE P]

[ORDER BY expr [ASC|DESC] [,…]]

𝑆𝑜𝑟𝑡 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝜋𝐸1,𝐸2,…𝐸𝑚𝜎𝑃𝑅1 × 𝑅2 ×⋯× 𝑅𝑛

non-relational

𝑄 ← 𝜎𝑃𝑅1 × 𝑅2 ×⋯× 𝑅𝑛

𝑆𝑜𝑟𝑡 𝜋𝐸′1,𝐸′2,…,𝐸′𝑚,𝐹1 𝐸1
′′ ,…,𝐹𝑘 𝐸𝑘

′′ 𝜎𝑃′ 𝐸1,𝐸2,…,𝐸𝑙𝛾𝐹1 𝐸1
′′ ,…𝐹𝑘 𝐸𝑘

′′ 𝑄

Query processing overview
• DBMS translates SQL to a special internal language

• Query plans

• logical: extended relational algebra with some non-relational operators

• physical: describes the actual implementation of the operators

• Think of query plans as data-flow graphs
• Edges: flow of records

• Vertices: relational and non-relational operators

• Input/Output of the operators: relations

• Three stages of query processing
• Parsing & query rewriting: SQL -> logical plan

• Query optimization:
logical plan -> optimized logical plan -> physical plan

• Query execution: evaluating the physical plan over the database

CSE707SEM (Fall 2022): Logistics and Introduction 15

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

An example of logical plan

Logical plan

Query processing overview

CSE707SEM (Fall 2022): Logistics and Introduction 16

SQL Query
SELECT S.name,E.grade

FROM student S, enrollment E

WHERE S.sid = E.sid

AND S.adm_year = 2021

AND E.cno = 562;

ODBC/JDBC/
command
line frontend

SQL
Parser* (Extended) Relational Algebra

𝜋𝑆.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562𝑆 ⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

* include multiple intermediate steps (e.g., parsing
tree/analysis/rewriting)

Internally represented as

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

Query
Optimizer

Physical plan

Index Scan
student S

Index Scan
enrollment E

Index Nested
Loop Join

𝜋𝑆.𝑛𝑎𝑚𝑒,𝑆.𝑠𝑖𝑑

𝜋𝑆.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

Query
Execution

**

** This picture by oksmith is licensed under CC0

Query result
S.name | E.grade

Alice | 4.0

Charlie| 2.3

(2 rows)

https://openclipart.org/detail/312062/female-computer-user-16c
https://openclipart.org/artist/oksmith
https://creativecommons.org/publicdomain/zero/1.0/

Query execution models
• Several models for implementing the operators

• Volcano model (aka iterator model)
• most traditional and widely used one
• pull-based execution

• Materialization model
• Vectorization model

• Running example
SELECT * FROM student
WHERE major=‘CS’ ORDER BY adm_year;

CSE707SEM (Fall 2022): Logistics and Introduction 17

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

Volcano model
• Operators implemented as subclasses of some iterator interface similar to below

• Encapsulation
• Edges are encoded as inputs (aka child iterators)
• Each operator implementation maintains its own internal state in its subclass
• Generally, any operator can be input to any other operators

• Evaluation strategy: pull-based execution
• Call next() repeatedly on the root
• Iterators recursively call next() on the inputs

• Can be pipelining or materializing, depending on the operators

• Note: the iterator tree sometimes is a separate homomorphic tree to the physical plan
• Allows caching of physical plan (read-only)
• A new iterator tree for storing mutable execution state per query

CSE707SEM (Fall 2022): Logistics and Introduction 18

struct iterator {

void init();

Record next();

void close();

void rewind();

Iterator *inputs[];

};

Example: heap scan
struct heap_scan_iterator: public iterator {

heap_scan_iterator(relation R) { // leaf level, no input in heap scan

table = create a Table object over R;

}

void init() {

iter = create and initialize an iterator over t; // initializing internal states
}

Record next() {

if (iter.next()) {

return the record in iter;

}

return an invalid record;

}

void close() {

close the iterator and the table;

}

void rewind() {

close and recreate a iterator in iter;

}

// internal state of a heap scan

Table *table;

Table::Iterator iter;

};
CSE707SEM (Fall 2022): Logistics and Introduction 19

Example: selection 𝝈 (streaming)

CSE707SEM (Fall 2022): Logistics and Introduction 20

struct selection_iterator: public iterator {

selection_iterator(iterator *c, BooleanExpression *e): {

set input[0] = c; // selection has one input node

set pred = e;

}

void init() {

input[0]->init(); // iterator implementation must recursively initialize the inputs

}

Record next() {

while (r = input[0]->next()) { // call next on the input iterator to get the next record for selection

if (pred evaluates to true on record r) { return r; } // only return when pred is true

}

return an invalid record;

}

void close() {

input[0]->close();

}

void rewind() {

input[0]->rewind();

}

// internal state of a selection. note that no record is ever stored in the iterator

BooleanExpression *pred;

};

Example: internal sort (blocking)
struct internal_sort_iterator: public iterator { // ctor omitted

void init() {

input[0]->init(); // iterator implementation must recursively initialize the inputs
}

Record next() {

if (!valid) {

while (r = input[0]->next()) records.push_back(r);

sort r; set i to 0; set valid to true;

} // will not return until all the records from the input are fetched
if (i < records.size()) return records[i++];

return an invalid record;

}

void close() {

input[0]->close();

}

void rewind() {

set i to 0; // think: why not call input[0]->rewind()?
}

// internal state of an internal sort. note that all the records from the input iterator are stored here.
Expressions *columns;

int n;

bool valid;

size_t i;

vector<Record> records;

}; CSE707SEM (Fall 2022): Logistics and Introduction 21

Example: putting it together

CSE707SEM (Fall 2022): Logistics and Introduction 22

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

init()

init()

init()

Example: putting it together

CSE707SEM (Fall 2022): Logistics and Introduction 23

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

next()

next()

next()

records=

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

sid name login major adm_year

Example: putting it together

CSE707SEM (Fall 2022): Logistics and Introduction 24

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

next()

next()

next()

records=

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

sid name login major adm_year

100 Alice alicer34 CS 2021

Example: putting it together

CSE707SEM (Fall 2022): Logistics and Introduction 25

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

next()

next()

next()

records=

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

sid name login major adm_year

100 Alice alicer34 CS 2021

Example: putting it together

CSE707SEM (Fall 2022): Logistics and Introduction 26

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

next()

next()

next()

records=

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

sid name login major adm_year

100 Alice alicer34 CS 2021

102 Charlie charlie7 CS 2021

103 David davel CS 2020

Example: putting it together

CSE707SEM (Fall 2022): Logistics and Introduction 27

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

next()

records=

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

sid name login major adm_year

100 Alice alicer34 CS 2021

102 Charlie charlie7 CS 2021

103 David davel CS 2020

Materialization model
• Fully materializes results in each operator

• Emits all results as a whole

• Can send tuples in row or column formats

• Can push down hints to avoid scanning too many records

• Good for queries that touches a few
records at a time
• OLTP workload

• Not good for those with large intermediate
results

CSE707SEM (Fall 2022): Logistics and Introduction 28

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

out = []

for t in S:

out.append(t)

return out;

out = []

for t in child.output():

if t.major = ‘CS’:

out.append(t)

return out

output = child.output()

sort(output)

return out

Vectorization model
• Emits a small batch of results at a time

• Still needs to loop over a next() function

• Fewer function calls & can often leverage SIMD

• Bounded memory usage unlike materialization model

• Good for OLAP workload

• Batch size may depend on hardware or
workload properties

• DBMS often takes a hybrid approach

CSE707SEM (Fall 2022): Logistics and Introduction 29

𝜎𝑚𝑎𝑗𝑜𝑟=′𝐶𝑆′

Heap Scan
student S

Internal sort by
adm_year

out = []

continue scan t in S:

out.append(t)

if |out| >= k:

return out

out = []

while c_out = child.Next():

out.extend(

filter(c_out, “major = ‘CS’”))

if |out| >= k:

return out

out = []

while c_out = child.Next():

out.extend(c_out)

sort(out)

return out

Motivation for Approximate Query Processing

30

Data stream

Transaction

DB

Offline collected

raw data

Data warehouseExtract
Transform
Load (ETL)

Query

Query execution

Query result

Post-processing

…

Evaluation & Analysis
Visualization/

Classification/

Regression/

…

Columnar store

Col A Col B Col C

Indexes Data cube

Challenges: lower end-to-end latency

minutes ~ hours

minutes ~ hours

Hours ~ half a day

CSE707SEM (Fall 2022): Logistics and Introduction

Approximate Query Processing

31

orders

SELECT SUM(lineitem.subtotal)
FROM orders, lineitem
WHERE orders.customer = ‘Alice’

AND orders.order_id = lineitem.order_id;

lineitem

Size = 10M Size = 100M

⋈𝐴

Index Scan
Cardinality = 5M

Heap Scan
Cardinality = 100M

Hash Join
Cardinality ∈ [0, 5 × 1014]

SUM

Output

DB System

CSE707SEM (Fall 2022): Logistics and Introduction

Random Sampling to Reduce Intermediate Sizes

32

Orders lineitem

Size = 10M Size = 100M

⋈𝐴

Random Sampling
Cardinality = 10K

Random Sampling
Cardinality = 10K

Join Sampling
Cardinality = 10K

Approximate

SUM

Output

DB System

SELECT SUM(lineitem.subtotal)
FROM orders, lineitem
WHERE orders.customer = ‘Alice’

AND orders.order_id = lineitem.order_id;

CSE707SEM (Fall 2022): Logistics and Introduction

Approximate Query Processing as a cheaper alternative

33

Data warehouse

Query

Approximate Query
Processing

Approximate/

Sampled

Query Result

Data stream

Transaction

DB

Offline collected

raw data

…

Online sampling/
streaming update

Visualization/

Classification/

Regression/

…

Sampling Indexes

Post-processing

Evaluation & Analysis

SketchesSynopses

Join

samples

ℎ1
ℎ2
ℎ3

X = 192.168.1.1

Seconds - minutes

Seconds - minutes

Seconds - minutes

CSE707SEM (Fall 2022): Logistics and Introduction

Presentation Sign up

CSE707SEM (Fall 2022): Logistics and Introduction 34

